
Технология изготовления полупроводниковых тонкопленочных резисторов и конденсаторов

#### Тонкопленочные резисторы





- 1 резистивная пленка;
- 2 контактная пленка проводящего материала;
- 3 подложка

- Проблема создания тонкопленочных резисторов связана с технологическими вопросами получения следующих характеристик пленки резистивного материала:
- удельного сопротивления пленки, его воспроизводимости и стабильности во времени;
- удельной рассеиваемой мощности пленки;
- температурного коэффициента сопротивления (ТКС);
- эксплуатационных характеристик (спектра и уровня шумов и др.).

Взаимосвязь конструктивных и технологических параметров резисторов устанавливается основным уравнением для их расчета

$$R = \frac{\rho_{\nu} \cdot l}{b \cdot d},$$

где R — сопротивление резистора, Ом;

 $ho_{_{
m V}}$  — удельное объемное сопротивление материала резистивной пленки, Ом×м; l,b,d — соответственно длина, ширина и толщина резистора

Проектируя тонкопленочные резисторы, предполагают, что и толщина резистивной пленки одна и та же для всех одновременно изготавливаемых резисторов.

Это позволяет ввести понятие  $\rho_S$  – поверхностного удельного сопротивления резистивной пленки, величина которого определяется только удельным объемным сопротивлением материала резистивной пленки и его толщиной и численно равна сопротивлению резистора квадратной формы с произвольным размером сторон и имеет размерность — Om/.

$$R = \rho_s \frac{l}{b} = \rho_s K_{\phi},$$

## Конфигурация тонкопленочных резисторов

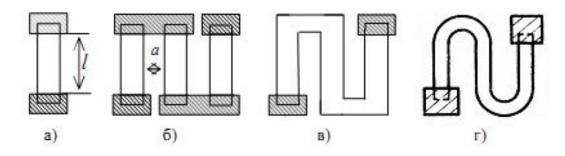



Рис. – Конфигурация тонкопленочных резисторов: а – полоска; б – составной из полосок; в – меандр; г – змейка.

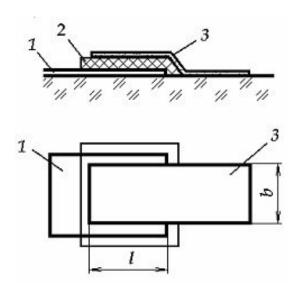
Контактные площадки следует располагать с противоположных сторон резистора для устранения погрешности совмещения проводящего и резистивного слоев.

### Материалы тонкопленочных резисторов

К материалам, в первую очередь, предъявляются определенные требования по <u>поверхностному сопротивлению</u>.

Наибольшее распространение имеют резисторы с сопротивлениями от 10 Ом до 10 Мом. Для обеспечения таких параметров необходимо, чтобы поверхностное сопротивление слоя составляло 10-10<sup>5</sup> Ом/ (так как линейные размеры резисторов приходится ограничивать).

Резистивные пленки должны характеризоваться низким температурным коэффициентом сопротивления ТКС (менее 10<sup>-4</sup> 1/°C).


Материалы, используемые для тонкопленочных резисторов, можно разделить на три группы:

- металлы;
- металлические сплавы;
- металлодиэлектрические смеси керметы.

Таблица 2.3 - Основные параметры материалов тонкопленочных резисторов

| Материал                         |                                                                                | Параметры                                                                    |                                                                                                     |                                                                                 |                                                             |
|----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|
| Для напыления резистивной пленки | Контактных<br>площадок                                                         | Удельное поверхностное сопротивление резистивной пленки ρ <sub>S</sub> ,Ом/□ | Диапазон номиналь-<br>ных значений сопро-<br>тивлений, Ом                                           | Допусти-<br>мая удель-<br>ная мощ-<br>ность рас-<br>сеяния $P_0$ ,<br>$BT/cm^2$ | Температурный коэффициент сопротивления ТКС при T=-60÷125°C |
| Нихром, проволока<br>X20H80      | Медь                                                                           | 300                                                                          | 50 - 30 000                                                                                         | 2                                                                               | 1.10-4                                                      |
| Нихром, прово-<br>лока           | Золото с подслоем<br>хрома                                                     | 10                                                                           | 1 - 10 000                                                                                          |                                                                                 | <b>-</b> 2,25·10 <sup>-4</sup>                              |
|                                  |                                                                                | 50                                                                           | 5 - 50 000                                                                                          |                                                                                 |                                                             |
| Сплав МЛТ-3М                     | Медь с подслоем ванадия (луженая) Медь с подслоем нихрома (защищенная никелем) | 500                                                                          | 50 - 50 000                                                                                         |                                                                                 | 2.10-4                                                      |
| Хром                             | Медь (луженая)                                                                 | 500                                                                          | 50 - 30 000                                                                                         | 1                                                                               | 0,6.10-4                                                    |
| Кермет К-50С<br>(ЕТО.021.013 ТУ) | Золото с подслоем<br>хрома (нихрома)                                           | 3000<br>5000<br>10 000                                                       | $   \begin{array}{r}     1000 - 10\ 000 \\     500 - 200\ 000 \\     10\ 000 - 10^6   \end{array} $ | 2                                                                               | $3 \cdot 10^{-4}$ $-4 \cdot 10^{-4}$ $-5 \cdot 10^{-4}$     |

### Тонкопленочные конденсаторы



# Тонкопленочный конденсатор имеет трехслойную структуру металл — диэлектрик — металл, расположенную на изолирующей подложке.

1) Емкость конденсатора определяется как

$$C = \frac{\varepsilon_0 \varepsilon s}{d} = \frac{\varepsilon_0 \varepsilon l \cdot b}{d},$$

где  $\varepsilon_0$  — электрическая постоянная;

ε — диэлектрическая постоянная материала;

s — поперечное сечение обкладок конденсатора (активная площадь);

*l,b* — длина и ширина обкладок;

d — толщина диэлектрической пленки.

При проектировании конденсаторов и разработке технологии их изготовления используют понятие об удельной емкости  $C_{\rho}$ , как одной из характеристик диэлектрического слоя

$$C_0 = \frac{C}{s} = \frac{\varepsilon \varepsilon_0}{d}$$
.

 $C_0 = \frac{C}{s} = \frac{\epsilon \epsilon_0}{d}$ . Чем больше Co, тем меньшую площадь занимает конденсатор на подложке

2) Электрическая прочность  $E_{np}$  , т.е. напряженность электрического поля, при которой происходит пробой конденсатора. Электрическая прочность определяется экспериментально по пробивному напряжению  $U_{np}$  как  $E_{np} = U_{np}/d$  .

Рабочее напряжение конденсатора должно быть меньше напряжения пробоя, т.е.

$$U_{pa6} = \frac{U_{np}}{K_{3}} = \frac{E_{np} \cdot d}{K_{3}},$$

Из последнего соотношения можно сформулировать условие выбора минимальной толщины диэлектрика

$$d \ge \frac{U_{pa6}K_3}{E_{np}}$$

### Материалы тонкопленочных конденсаторов

Параметры тонкопленочного конденсатора определяются в основном диэлектрическим материалом.

Однако следует иметь в виду, что на свойства диэлектрика могут оказывать существенное влияние металлические обкладки.

Поэтому при разработке конденсаторов необходимо выбирать совместно всю совокупность входящих в их структуру материалов.

**Диэлектрик.** К основным характеристикам диэлектрических материалов для конденсаторов относятся диэлектрическая постоянная  $\varepsilon$  и электрическая прочность Ed.

Диэлектрические материалы должны обладать минимальной гигроскопичностью, высокой механической прочностью при циклических изменениях температуры, хорошей адгезией к подложкам.

Диэлектрические материалы, используемые для тонкопленочных конденсаторов в основном представляют собой окислы полупроводников и металлов.

Из *окислов полупроводников* наибольшее распространение в тонкопленочной технологии получили окисел кремния SiO и окисел германия GeO, имеющие высокую диэлектрическую проницаемость.

Наибольший интерес представляет ряд *окислов тугоплавких металлов*, таких как Ta<sub>2</sub>O<sub>5</sub>, TiO<sub>2</sub>, HfO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>. Эти материалы по сравнению с другими окислами обладают наиболее высокими значениями диэлектрической проницаемости. Технология получения этих пленок развита далеко не в равной мере. Наиболее отработана технология пленок Ta<sub>2</sub>O<sub>5</sub>.

Материалы обкладок. К материалам обкладок предъявляются следующие требования:

низкое сопротивление 0,05–0,2 Ом/ ,

• ровная и гладкая поверхность

• малый коэффициент диффузии.

Отказ ТПК чаще всего происходит из-за закорачивания, которое зависит как от качества диэлектрической пленки, так и от качества обкладок.

Наилучший выход получается при использовании алюминия, который имеет низкую температуру испарения и малую подвижность атомов на поверхности, благодаря окислительным процессам.

### Конструкции тонкопленочных конденсаторов

К конструкции конденсаторов предъявляется ряд конструктивно-технологических требований:

- минимальные габаритные размеры;
- воспроизводимость характеристик в процессе производства;
- совместимость технологии их изготовления с процессами производства других элементов гибридной интегральной схемы.

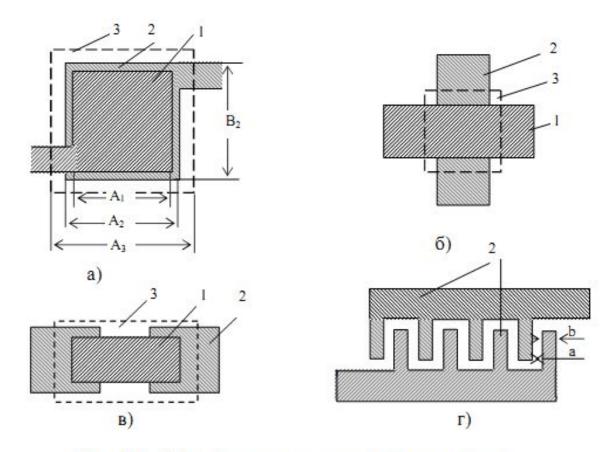



Рис. 2.8 – Конструкции пленочных конденсаторов: 1 – верхняя обкладка; 2 – нижняя обкладка; 3 – диэлектрик