Влияние присадок на изменение кристаллической решетки и физико-механических свойств цветных металлов

Что из себя представляют цветные металлы и какие они бывают?

- Цветные металлы не железные металлы и сплавы не содержащие железо. В производстве существует классификация цветных металлов:
- легкие литий (Li), рубидий (Rb), цезий (Сs), бериллий (Ве);
- радиоактивные трансурановые элементы (уран (U), радий(Ra), франций (Fr), плутоний (Pu) и другие), полоний (Po), технеций (Tc);
- рассеяные галлий (Ga), индий (In), селен (Se), теллур (Те), рений (Re), таллий (Tl), германий (Ge);

Что из себя представляют цветные металлы и какие они бывают?

- тугоплавкие титан (Ті), тантал (Та), молибден (Мо), ванадий (V), цирконий (Zr), гафний (Нf), ниобий (Nb), вольфрам (W);
- редкоземельные скиндий (Sc), иттрий (Y), лантан и лантоиды;
- Германий, селен и теллур отнесены к металлам условно и в отличии от металлов они ситаются полупроводниками

Применение. Рассмотрим характеристики цветных металлов на примере титана

В машиностроении широко используют в чистом виде так и в сплавах такие металлы как: медь, олово, цинк, алюминий, титан, никель, магний, свинец, молибден.

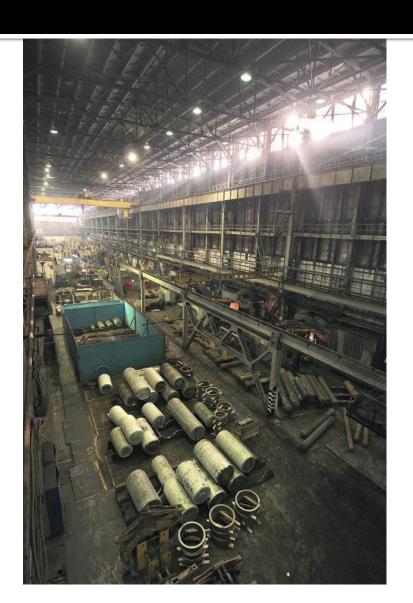
Подробно рассмотрим методы получения, свойства металла и его сплавов на примере титана.

Титан - серебристо-белый металл, существующий в виде двух аллотропических модификаций:

- альфа-форма при температуре ниже 882 градусов С обладает плотноупакованной решеткой
- бета-форма при температуре выше 882
 градусов С обладает кубической объемно центрированной решеткой

При различных добавках температура при которой изменяется кристаллическая решетка может изменяться.

Титан характеризуется хорошими физическими свойствами: прочный, легкий, стойкий к коррозии.


Производство титана

Наиболее распространенными рудами для получения титана являются ильменит (FeO*TiO2), рутил (ТіО2), титаномагнетит (FeTiO3*Fe3O4). После обогащения концентраты титановых руд обычно содержат 42-65% ТіО2. Для получения металлического титана требуется восстановление четыреххлористого титана или окислов титана магниетермическим или натриетермическим способом. Магний, титан и хлористый магний производят на одном заводе, побочный продукт при производстве магния - хлор.

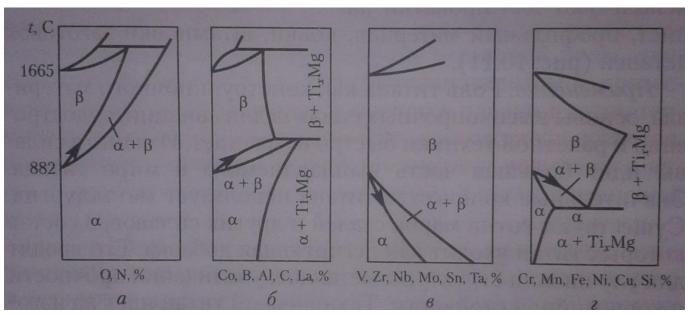
Производство титана

Концентраты ильменитовых руд содержат более 40% оксидов железа (FeO и FeTiO₃). Их отделяют от главного компонента - концентрата титановой руды. В процессе плавки в руднотермических печах окислы железа и титана восстанавливаются, образуются железо которое насыщается углеродом, в следствии этого железо превращается в чугун, а низшие окислы титана переходят в шлак, который содержит 80-90% (ТіО2), 2-5% (FeO) и множество других примесей в общем количестве не превышающие 5%. Титановый шлак хлорируют для образования четыреххлористого титана (TiCl4), из которого в реакторах восстанавливается титан. Побочный продукт этого процесса - чугун, который используется в металлургическом производстве.

Производство титана

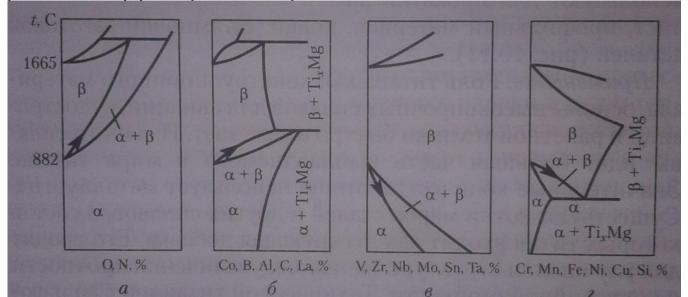
Твердые частицы восстановленного титана спекаются в пористую массу - титановая губка, остается жидкий (MgCl2) который убирается из реактора. Губка титана пропитана магнием и хлористым магнием, общее количество которого около 35-45%. Титановые губки плавят в вакуумных дуговых печах. Отлитые слитки переплавляют повторно, потому что после первой плавки могут образовываться дефекты, поры, раковины.

Для получения сплавов титана с другими металлами (алюминием, ванадием, марганцем и др.) эти металлы перемешивают в губке, поступающей на первую плавку. Переплавляют два раза, потому что после второго раза происходит полное равномерное распределение примеси в слитке.


Где применяются сплавы титана

Сплавы титана применяются в химической и бумажной промышленности, в пищевой промышленности (котлы, детали холодильников), в авиа- и турбостроении (компрессоры, лопатки турбин), судостроении (обшивки, гребные винты), электронной и вакуумной технике (газопоглотители, детали приборов), в медицине (инструменты, внутренние протезы). Легирующие элементы, добавляемые в титан, характеризуют по их влиянию на температуру полиморфного превращения.

Влияние присадок на полиморфную температуру


Влияние элементов альфа (а,б) и бета- стабилизаторов (в,г) на положение температуры полиморфного превращения титана.

Альфа-стабилизаторы- AI, O, N, B, C, La- повышающие температуру полиморфного превращения и расширяющие область существования альфа-модификации титана. Некоторые элементы этой группы образуют соединения с титаном (рис a, б).

Влияние присадок на полиморфную температуру

Бета-стабилизаторы- элементы, понижающие температуру полиморфного превращения и расширяющие область бета-модификации (рис в,г). В эту группу входят элементы, изоморфные бета-модификации и образующие с Ті непрерывный ряд твердых растворов (V, Zr, H, Mo, Sn, Ta) и Cr, Mn, Fe, Ni, Cu, Si, вызывающие эвтектоидный распад В-фазы с образованием титанидов. В зависимости от легирования сплавы титана делятся на альфа-сплавы, (альфа + бета)-сплавы и бета-сплавы.

Классификация сплавов титана

По структуре:

- сплавы с альфа-структурой не упрочняются термообработкой;
- псевдо альфа-сплавы (в составе есть небольшое количество бета-стабилизаторов) упрочняются термообработкой (закалка по мартенситному типу и старение);
- бета-сплавы с повышенным содержанием бета-стабилизаторов имеют структуру бета-твердого раствора; псевдо бета-сплавы имеют в структуре немного альфа-фазы;
- двухфазные (альфа + бета)-сплавы упрочняются закалкой по мартенситному типу и старением (структура зависит от соотношения альфа и бета-стабилизаторов). К двухфазным относятся и альфа-сплавы, из которыз после термообработки выделяется интерметаллидная фаза;

Классификация сплавов титана

По технологии производства:

- деформируемые сплавы- используется ОМД-ковка, прессование вытяжкой и т.д; маркируются буквами ВТ и цифрами, показывающими номер сплава (таблица 2);
- литейные сплавы- отличаются хорошей жидко-текучестью, способностью заполнять формы сложной конфигурации. Недостаток- много литейных дефектов (ликвация, усадочные поры и раковины). Маркировка такая же, как и для деформируемых сплавов (тот же состав), но добавляется буква Л (таблица 1).
- порошковые сплавы- для изготовления крупных деталей сложной конфигурации по размерам, близким к чистовым методами порошковой металлургии из элементарных порошков (ЭП), предварительно легированных порошков (ПЛ) или производством с быстрой кристаллизации (БК). Наиболее распространено производство легированных порошков. Этот метод позволяет при тех же эксплуатационных характеристиках, что и у литого или деформированного металла, добиться снижения до 50% времени и стоимости изготовления деталей.

Химический состав и свойства литейных сплавов

(Альфа + бета) сплавы (мартенситный класс)

Марка сплава	Содержание элементов, %	σ _в , МПа	σ _{0,2} , ΜΠα	δ, %	Применение
			α-спла	вы	
BT5	5% Al	750—	660— 850	10—15	Термически неупрочняемые, жаропрочные до 500 °С. Изготавливают поковки, трубы, прокат, детали, работающие с нагревом
BT5-1	5% Al; 2,5% Sn	900			
	Name of the	По	севдо α-	сплавы	
OT4-1	1,5% Al; 1,0% Mn	600- 700	560- 600	15	Упрочняются термической обработкой, жаропрочны, технологичны. Применяют для сварных деталей и узлов в самолетостроении
BT-20	6,0% Al; 2,0% Zr; 1,0% Mn; 1,0% V	950— 1000	900- 950	10	

Химический состав и свойства литейных сплавов

BT3-1	6% Al; 2,5% Mo; 0,2% Si; 0,5% Fe; 2% Cr	1100— 1200	1050— 1100	12—14	Упрочняются термической обработкой, обладают жаропрочностью, хорошо свариваются. Применяются для деталей газотурбинных двигателей в самолетои ракетостроении
BT6	6% Al; 4% V	Jalan	1000- 1050	14-16	
BT14	4,5% Al; 13,9% Mo; 1,0% V	1150— 1400	1080— 1300	6—10	
BY EX	BILLEY STATES	Пс	евдо β-с	сплавы	и по выпроинности
BT15	4% Al; 11% Cr; 8% Mo	130— 1500	CHAPE	4-3	Упрочняются термической обработкой, хорошо штампуются. Применение ограниченно из-за плохой свариваемости и низких свойств в зоне шва
BT30	11% Mo; 4,5 S; 5,5% Zn	1400— 1500		7-11	

Примечание. Сплавы BT5-1, OT4 и BT8 приведены после отжига, остальные — после закалки и старения.

Химический состав и свойства литейных сплавов

Марка	Содержание элементов, %	σ _в , ΜΠα	σ _{0,2} , ΜΠα	Применение	
втл1	5% Al; 1% Si	850	5	Данные сплавы применя- ются для фасонного ли-	
ВТ5Л	5% Al	700— 900	6-13	тья. Они обладают жаропрочностью (до 400 °C), коррозионной стойкостью. Из этих сплавов	
ВТ14Л	5% Al; 0,5% Cr; 3% Mo; 0,5% Fe	900	5		
ВТ21Л	6,6% Al; 0,3% Cr; 0,7% Mo; 1,2% V; 5% Zr		4	отливают детали двига- телей в самолето- и раке- тостроении	

Применение нано технологий титана на примере медицины

С 2011 года в России началась разработка прогрессивных технологий производства новых титановых имплантатов, в том числе ультрамелкозернистых, с многофункциональными биоактивными наноструктурированными покрытиями для восстановительной, костнопластической хирургии и стоматологии.

Предприятия специализируются на производстве проката в виде прутков и полос из наноструктурного и субмикрокристаллического нелегированного титана марок BT1-о, Grade 4 для нужд медицины и технических целей.

ультрамелкозернистый титан в форме прутков

Применение нано технологий титана на примере медицины

Продукция обладает повышенными механическими свойствами и высокой биосовместимостью, поскольку, в отличии от широко применяемых в настоящее время во всем мире легированных титановых сплавов системы Ti-Al-V, не содержит вредных для живого организма легирующих элементов (Al и V), а также характеризуется повышенной коррозионной стойкостью.

Медицинские изделия, производимые из наноструктурного титана, по прочности на сдвиг, кручение и изгиб не уступают соответствующим из легированных сплавов титана, при этом демонстрируют чрезвычайно высокую пластичность, то есть изделия из них обладают высокой надежностью.

микроструктура материала под электронным микроскопом

Вывод

На сегодняшний день цветные металлы востребованы во всех видах производства и имеют хорошее будущее в нанотехнологии.

