Тема	a: Ha	дцарство	Эукарис	ты.	Царство	Растения.
Водоросли.		Отд	Отдел		ые	Водоросли
						План:
1.	Делен	ие царст	гва Рас	тения	на	подцарства.
2. Место настоящих водорослей в системе царства Растения.						
Деле	ение		на			отделы.
3.	Типы	морфолог	гической	стру	ктуры	водорослей.
4.		Строение	K	клетки		водорослей.
5.	Способы		размн	размножения		водорослей.
6.		Отдел	3e.	леные		Водоросли
6.		Отдел	- 3e.	леные		Водоросли

Цель: изучить общую характеристику водорослей, основные особенности Отдела Зеленые водоросли.

Литература:

- 1. Белякова, Г. А., Дьяков, Ю. Т., Тарасов, К. Л. Ботаника: в 4 т. Т. 1. Водоросли и грибы: учебник для студ. высш. учеб. Заведений / Г.А. Белякова, Ю.Т. Дьяков, К.Л. Тарасов. М.: Издательский центр «Академия», 2006. 320 с.
- 2.Белякова, Г. А., Дьяков, Ю. Т., Тарасов, К. Л. Ботаника: в 4 т. Т. 2. Водоросли и грибы : учебник для студ. высш. учеб. заведений / Г.А. Белякова, Ю.Т. Дьяков, К.Л. Тарасов. М.: Издательский центр «Академия», 2006. 320 с.
- 3. Курс низших растений: учебник для студентов университетов / под ред. Б.П. Великанова. М.: Высш. шк., 1981. 505 с.

Царство Растения принято делить на 3 подцарства: Настоящие водоросли, Багрянки (Красные водоросли), Высшие растения.

Настоящие водоросли и Багрянки называют низшими растениями. Эти два подцарства вместе с цианобактериями раньше объединяли в сборную (не таксономическую!!!) группу водорослей (Algae). Теперь цианобактерии рассматриваются в рамках царства Дробянки. Название «водоросли» дано по преимущественной среде обитания этих организмов – воде, хотя немало и сухопутных форм. В воде еще растут некоторые папоротники, мхи, цветковые растения – высшие водные растения.

Водоросли не следует путать с высшими водными растениями. Отличить их друг от друга позволяют то, что у водорослей (низших растений) нет дифференцировки на истинные ткани и органы, а также отсутствует стадия зародыша, т.е. зигота сразу развивается в дочерний организм. Вегетативное тело водорослей (и настоящих, и красных) называется таллом, или слоевище.

Основные критерии выделения отделов низших растений:

- 1. Набор пигментов.
- 2. Продукты фотосинтеза (основные запасные вещества в клетке).
- 3. Ультраструктура пластид (хлоропластов, или хроматофоров).
- 4. Строение жгутикового аппарата у взрослых стадий или стадий, служащих для размножения.

Деление настоящих водорослей на отделы

- Отдел 1. Зеленые водоросли *Chlorophyta*
- Отдел 2. Желто-зеленые водоросли Xanthophyta
- Отдел 3. Диатомовые водоросли *Bacillariophyta* (*Diatomeae*)
 - Отдел 4. Золотистые водоросли *Chrysophyta*
 - Отдел 5. Пирофитовые водоросли *Pyrrophyta*
 - Отдел 6. Эвгленовые водоросли Euglenophyta
 - Отдел 7. Бурые водоросли *Phaeophyta*

Различают 10 типов морфологической структуры водорослей.

Одноклеточные формы

- 1. Амебоидная (ризоподиальная) клетка не имеет жесткой оболочки (желто-зеленые водоросли Ризохлорис, Ризохризис).
- 2. Монадная клетка имеет жгутик, осуществляющий движение. У многоклеточных или неклеточных форм такую структуру могут иметь гаметы и зооспоры (Хламидомонада).
- 3. Коккоидная неподвижные клетки одеты плотными оболочками и объединены в колонии или ценобии (Клостериум, хлорококк).
- 4. Пальмеллоидная неподвижные клетки объединены в общую слизь (Тетраспора, из отд. Зеленые водоросли).

Многоклеточные формы

- 5. Нитчатая клетки соединены в нить (Улотрикс, спирогира).
- 6. Разнонитчатая (гетеротрихальная) нити неоднородны, часть их стелется по субстрату, другая часть поднимается над ним (Стигеоклониум, из отд. Зеленые водоросли).
- 7. Пластинчатая, или ложнотканевая таллом имеет форму тонкой пластинки, которая образуется из разросшейся густо разветвленной нити (Ульва, Ламинария).
- 8. Харофитная самый сложный морфологический тип. Внешне водоросли напоминают хвощи. У них есть «стебель» и «листья», ризоиды с клубеньками.

Неклеточные формы

- 9. Сифональная водоросли имеют относительно крупные размеры, таллом это одна гигантская клетка с большим числом ядер и без межклеточных перегородок. Рост таллома идет за счет митотического деления ядер, клетка же не делится (Бриопсис, Вошерия).
- 10. Сифонокладальная слоевище построено из многоядерных клеток, которые соединены в нитчатые или иной формы многоклеточные талломы (Кладофора, сначала таллом развивается как сифональный, затем образуются перегородки и получается несколько крупных многоядерных клеток).

Строение клетки водорослей

Клетка водорослей имеет характерные черты эукариотической клетки, т. е присутствует ядро и все органеллы (пластиды, митохондрии, рибосомы, ЭПС, аппарат Гольджи, лизосомы, вакуоли).

Хлоропласты водорослей называют также **хроматофорами.** В отличие от хлоропластов высших растений хроматофоры чрезвычайно разнообразны по форме — бывают в виде пояска (улотрикс), спирали (спирогира), звезды (клостериум), полусферы (ботридиум), пластинки (мужотия), сетки (кладофора).

Двигательный аппарат монадных клеток водорослей представлен жгутиками типичного для эукариот строения. Жгутик состоит из свободной части, базального тела и корней. Снаружи жгутик окружен мембраной, внутри содержатся микротрубочки (9 пар по периферии и 1 – в центре – в средней части и 9 триплетов и ни одной в центре – в базальном теле).

Монадные клетки обычно имеют кирпично-красный светочувствительный глазок, или стигму, представленный рядами гранул, содержащих пигмент астаксантин (гематохром). У водорослей разных групп глазки в деталях различаются. В большинстве случаев они являются частью хлоропласта, располагаясь между ламеллами, однако у эвгленовых водорослей глазки находятся вне пластиды.

Способы размножения водорослей

Вегетативное размножение происходит частями таллома или при помощи специальных органов, например, клубеньков на ризоидах у водорослей рода Хара.

Бесполое осуществляется при помощи спор, которые бывают нескольких типов:

- 1) *зооспоры* подвижные споры, снабженные жгутиками (Эктокарпус, Мелозира, Кладофора);
- 2) апланоспоры неподвижные споры, лишенные жгутиков (Порфира, Полисифония); если апланоспоры по строению аналогичны материнским клеткам, то их называют автоспорами (Хлорелла);
- 3) синзооспоры многоядерные и многожгутиковые зооспоры (Вошерия).

Суть **полового процесса** — слияние половых клеток (гамет). Однако у водорослей могут сливаться и неспециализированные структуры. Может происходить *автогамия* — слияние ядер внутри одной клетки — образуется диплоидная зигота (у диатомовых водорослей).

Половой процесс без образования гамет может идти путем слияния клеток морфологически неразличимых взрослых особей:

- 1) *хологамия* слияние целых одноклеточных организмов (Дуналиэлла);
- 2) конъюгация сливается содержимое вегетативных недифференцированных клеток (Класс Конъюгаты Спирогира, Кл. Пеннатные из отд. Диатомовые водоросли).

Типы жизненных циклов растений

Жизненным циклом называют изменения, претерпеваемые особью от какой-либо фазы развития до одноименной фазы (от споры до споры, от зиготы до зиготы, от гаплобионта до гаплобионта, от диплобионта до диплобионта).

У водорослей представлены все возможные типы жизненных циклов.

Варианты редукционного деления – R!

Зиготическая редукция – первое деление зиготы

Гаметическая – перед образованием гамет

Спорическая – перед образованием спор

Соматическая – в клетках вегетативного тела

Царство растения. Низшие растения. Водоросли . Отдел Зеленые водоросли — *Chlorophyta*

Во многих системах отдел зеленых водорослей делят на 3 класса:

- Кл. собственно зеленые водоросли, или равножгутиковые *Chlorophyceae*, *Jsocontae* характеризуется бесполым размножением обычно зооспорами с двумя- четырьмя, реже многими изоморфными жгутиками, иногда аплапоспорами. В классе представлены почти все ступени морфологической дифференциации таллома.
- Кл. Конъюгаты *Conjugatophyceae* характеризуется отсутствием в жизненном цикле жгутиковых стадий, т.к. бесполое размножение отсутствует, а половой процесс конъюгация.
- Кл. Харовые водоросли *Charophyceae* включает крупные водоросли со сложной морфологической дифференцировкой нитчатого таллома. Бесполого размножения нет. Половой процесс оогамный. Половые органы оогонии и антеридии многоклеточные, сложного строения.

Кл. Собственно зеленые или равножгутиковые водоросли (Chlorophyceae)

Занимает центральное положение среди всех зеленых водорослей. В этом классе весьма полно представлены ступени морфологической дифференциации таллома, которые взяты за основу деления класса на порядки.

Порядок Вольвоксовые (Volvocales)

Сюда относятся монадные, т.е. снабженные жгутиками, одноклеточные, ценобиальные и колониальные водоросли, подвижные в течение вегетационной жизни. Жгутиков чаще 2(1-3). Ядро шаровидное, в центре клетки, хлоропласт один, чашевидный париентальный с одним крупным пиреноидом. В передней части глазок, есть пульсирующие вакуоли.

Большинство автотрофы, известны гетеротрофы и миксотрофы. Размножение вегетативное, бесполое и половое (разнообразные формы). Зигота прорастает после периода покоя.

Вольвоксовые - типичные активные планктеры. Обитают преимущественно в мелких, стоячих, нередко быстро пересыхающих водоемах.

Это активные санитары загрязненных и сточных вод. Их используют в качестве показательных форм при биологическом анализе загрязненныхвод. Большинство автотрофы, известны гетеротрофы и миксотрофы. Размножение вегетативное, бесполое и половое (разнообразные формы). Зигота прорастает после периода покоя.

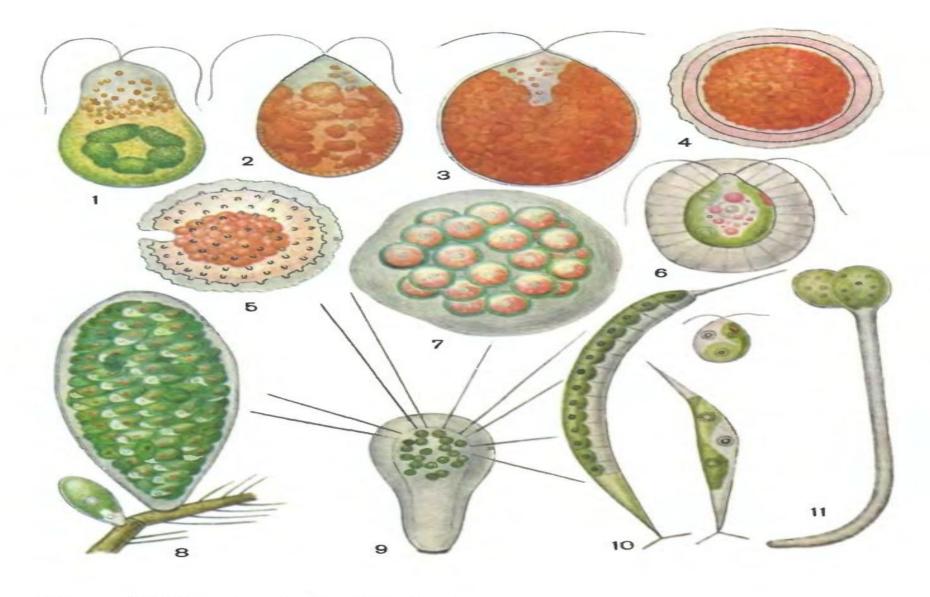
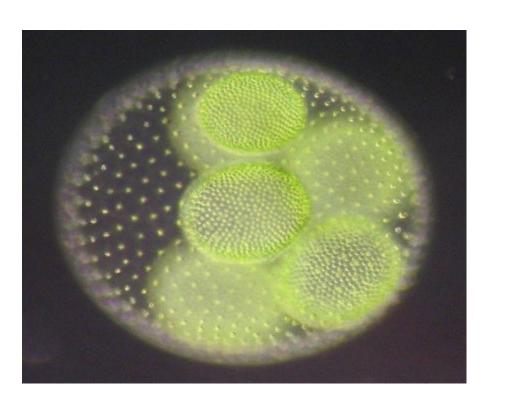
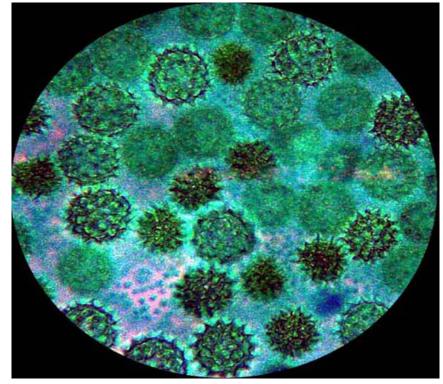




Таблица 29. Вольвоксовые в протококковые водоросли:

1-7— каротиноносные виды вольвоксовых (I-5— Dunaliella salina, вегетативные клетки с каплями гематохрома (I.2) и стадии образования цист (3-5); 6, 7— Haematococcus pluvialis, вегетативная клетка и апланоспоры); 8-II— протококковые (8— Chlorangiopsis epizootica, молодая клетка и зооспорангий; 9— Apiocystis brauniana; I0— Korschikoviella gracilipes; I1— Protosiphon botryoides).

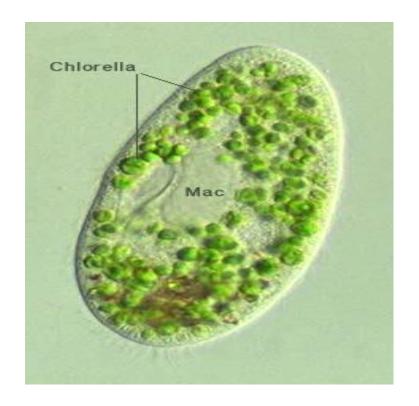
Вольвокс - колонии в виде шаров диаметром до 2 мм, в периферическом слое от 20 до 50 тыс. хламидомонадоподобных клеток, сросшихся боковыми стенками и соединенных одна с другой плазмодесмами. В пределах колонии наблюдается дифференциация клеток. Громадное большинство - вегетативные клетки, не принимающие участия в размножении. Между ними более крупные репродуктивные клетки. Около десятка из них - **партеногонидии**, которые в результате многократных делений дают начало молодым дочерним колониям внутри материнской. Половой процесс - оогамия. Оогонии и антеридии возникают также из репродуктивных клеток.

Порядок Протококковые (Protococcales) или Хлорококковые (Chlorococcales)

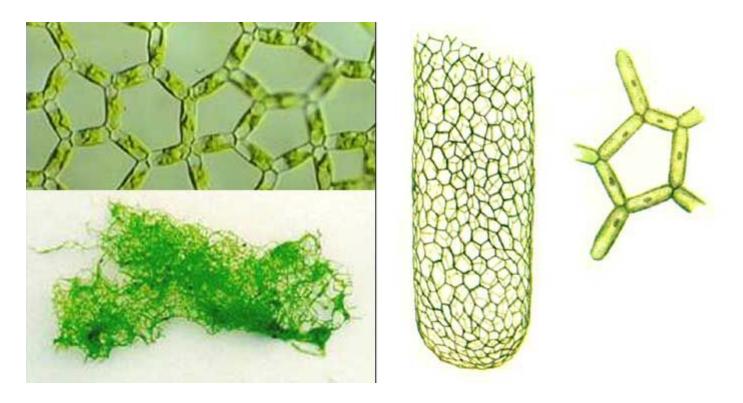
Порядок объединяет коккоидные формы, в основном это одноклеточные и ценобиальные формы, реже колонии. В эволюционном плане зеленых водорослей на этом этапе впервые возникла, утвердилась и приобрела широкое развитие коккоидная, типично растительная структура тела.

По строению протопласта протококковые напоминают вольвоксовых. Наиболее примитивные из них сохранили пульсирующие вакуоли, глазок и даже жгутики, хотя последние неподвижные и называются псевдоцилиями. Наличие этих рудиментальных органелл доказывает происхождение протококковых от вольвоксовых.

Громадное большинство - микроскопические формы, лишь у немногих родов таллом может достигать крупных размеров. Форма клеток разнообразна, но преобладает шаровидная, элипсовидная и яйцевидная. Оболочка клеток всегда сплошная, из целлюлозы, реже с примесью пектиновых веществ, у низших форм - пектиновая. У многих видов она снаружи снабжена щетинками, иглами, шипиками, бородавками или слизью, что помогает клетке парить в толще воды.


Основная масса протококковых водорослей - планктонные формы. Для них характерна миксотрофность, некоторые виды встречаются в симбиозе с другими организмами. Есть среди протококковых виды - эндофиты, живущие в инфузориях, в лишайниках.

У протококковых водорослей преобладает бесполое размножение, реже наблюдается половой процесс, иногда они размножаются путем простого деления клеток.

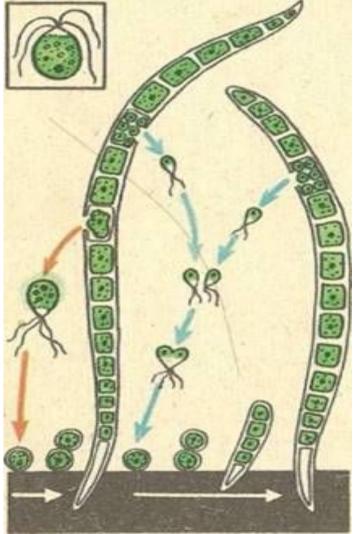

Бесполое размножение осуществляется геми-зооспорами, зооспорами и автоспорами.

Половой процесс встречается редко, в основном, это - изогамия, еще реже - гетерогамия. Оогамия известна лишь у немногих родов.

Хлорелла - шаровидные клетки одеты гладкой оболочкой, содержат чашевидный, вернее колоколообразный хроматофор. Размножается хлорелла исключительно автоспорами, возникающими по 4 - 8 в одной клетке. Хлорелла нетребовательна к условиям, распространена повсеместно. В водоемах - это типичный планктер. Встречается и в бентосе, на наземных субстратах, входит в состав лишайников. Хлорелла удобна для различных исследований, по количеству работ, посвященных хлорелле, она занимает первое место среди водорослей. Хорошо культивируется.

Гидродикцион сетчатый (водяная сеточка) - Hydrodictyon reticulatum обычна в тихих заводях рек, прудах, ямах. Ценобии ее имеют вид сетчатого мешка до 1 м длиной. Каждая стенка петли - отдельная клетка длиной до 1,5 см, образовавшаяся из одной зооспоры. Внутри каждой клетки находится сложнорасчлененный хроматофор со многими пиреноидами, под ним - многочисленные ядра (до нескольких тысяч). При бесполом размножении протопласт клетки раскалывается на 7000-2000 двужгутиковых зооспор. Зооспоры не покидают оболочки материнской клетки, недолго движутся, складываются в новую маленькую сеточку, которая освобождается после расплывания

Порядок Улотриксовые (Ulothrichales)

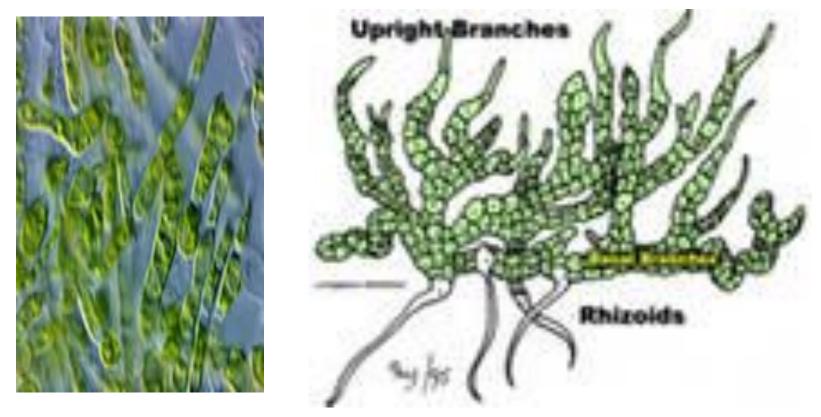

К улотриксовым относятся водоросли, имеющие нитчатое строение, а также некоторые пластинчатые и мешковидные, которые все же в начале онтогенеза имеют нитчатую форму. Все клетки растения могут участвовать в росте растения, все могут образовывать споры и гаметы, за исключением клеток основания нити, которыми они прикрепляются.

Клетки тела автономны: способны к регенерации, вегетативному размножению, а также способны становиться репродуктивными. При бесполом размножении во всех зеленых клетках развивается от 2 до 16(32) четырехжгутиковых зооспор. Обычно этот процесс начинается в апикальной (конечной клетке) и продвигается к основанию нити.

После периода движения зооспора останавливается, сбрасывая один задругим жгутики, прикрепляется к субстрату и прорастает в нить.

При половом размножении в клетках возникают двухжгутиковые гаметы в числе 4(8)-32(64). Половой процесс чаще изогамный, преобладает гетероталлизм. Четырехжгутиковая зигота прорастает в одноклеточный спорофит (спорофит впадает в период покоя), который при созревании распадается на 4-16 четырехжгутиковых зооспор. Зооспоры ведут себя так же как и зооспоры бесполого поколения.

улотрикс опоясанный (*Ulothrix zonata*), произрастающий прикрепленным к субстрату в быстро текущих чистых ручьях. Улотрикс образует нить из одного ряда клеток, одетых толстой оболочкой, в протопласте имеется пластинчатый хроматофор, опоясывающий клетку изнутри в виде незамкнутого кольца.



Ульва латук, или ульва салатная -*Ulva lactuca* L. - таллом двухслойный, пластинчатый достигает крупных размеров, имеет гофрированные края и прикрепляется к субстрату суженным в короткий черешок основанием.

Ульвовые в отличие от улотриксовых имеют паренхимное строение, преимущественно морские обитатели.

Порядок Хетофоровые (Chaetophorales)

Слоевище представителей состоит из однорядных нитей, но нити эти ветвятся, и все слоевище дифференцировано на систему стелющихся и вертикальных разветвленных нитей - разнонитчатая структура. Большинство хетофоровых имеют на слоевище так называемые волоски или щетинки. У одних это - конечные клетки веточек, сильно вытянутые и лишенные содержимого. У других - это выросты оболочки. Хетофоровые преимущественно пресноводные организмы, у большинства из них тело покрыто тонким слоем слизи.

фричиелла(Fritschiella), единственный вид, который приспособился к существо единственный вид, который приспособился к существованию в почве. Под поверхностью почвы простилаются стелющиеся нити, от которых вниз отходят ризоиды, а вверх - вертикальные нити.

Порядок Сифоновые (Siphonales)

В порядок сифоновых объединены водоросли не имеющие клеточного строения. Их крупное, сложно устроенное тело представляет собой одну клетку с множеством ядер или большое число многоядерных клеток.

Внутреннее строение сифоновых характеризуется наличием центральной вакуоли и пристенного слоя цитоплазмы с множеством ядер.

В хлоропластах имеются, кроме обычных, два специфических пигмента - сифонеин и сифоноксантин. Сифоновые - группа довольно древняя. Общее число ныне живущих видов 400-500, больше 90% из них - морские. Размножение - вегетативное и половое. Бесполого размножения у большинства представителей нет. Половой процесс гетерогамный, реже изогамный. Большинство этих водорослей диплобионты. Редукционное деление ядер имеет место перед образованием гамет. У некоторых обнаружена смена генераций (изо- и гетероморфная).

Игольчатая каулерпа (Caulerpa grassipes)

Р. Каулерпа (*Caulerpa*) - горизонтально стелющееся разветвленное цилиндрическое корневище снизу несет разветвленные ризоиды, на верхней стороне - ряд вертикально стоящих ассимилирующих побегов в виде нитей, уплощенных ветвей, листоподобных образований.

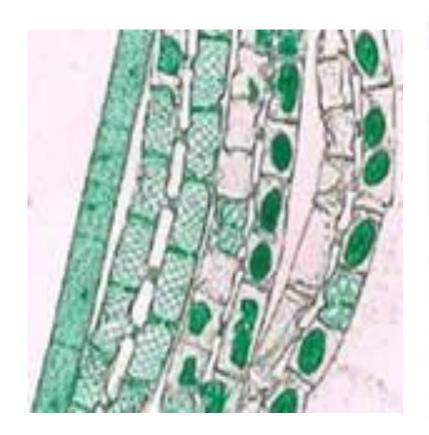
Каулерпа Caulerpa (*Coulepra*) racemosa.

Среди водорослей с сифонокладальной структурой следует отметить кладофору. Виды кладофоры распространены в морских и пресных водах, имеют нитчатый, обильно разветвленный таллом, состоящий из вытянутых цилиндрических клеток. Под толстой и сложной, не ослизняющейся оболочкой располагается постенная цитоплазма, содержащая многочисленные ядра.

Класс Конъюгаты, или Сцеплянки (Conjugatophyceae)

Конъюгаты - одноклеточные и многоклеточные нитчатые водоросли.

Космополиты, встречаются на всех континентах. Живут неприкреплен-ными в пресных водоемах, реже в сырых местах в земле. Класс включаетоколо 4500 видов. Их особенности - полное отсутствие жгутиковыхстадий (зооспор и снабженных жгутиками гамет) и особый тип полового процесса в виде конъюгации. Образование зигот у конъюгат — явление довольно редкое.


В вегетативном состоянии все гаплобионты. В большинстве случаев одноклеточные конъюгаты размножаются обычным вегетативным делением в поперечной плоскости, а нитчатые — распадением нитей на отдельные клетки. Клетки конъюгат одноядерные, хроматофоры крупные, лентовидные.

Своеобразный половой процесс - конъюгация.

Порядок Зигнемовые (Zygnematales)

Нитчатые неветвящиеся ярко-зеленые водоросли пресных водоемов.

Состоят из одного ряда цилиндрических клеток, одетых цельной оболочкой без пор и слизистым чехлом. Благодаря чехлу нити зигнемовых и их скопления слизистые на ощупь. Важнейшими систематическими признаками при выделении родов у зигнемовых водорослей является форма и положение хлоропласта: осевой пластинчатый, осевой звездчатый или постенный спирально- лентовидный.

Спирогира (*Spirogyra*) - самый обширный род среди зигнемовых (около 340 видов) - имеет спирально закрученные зеленые ленты хлоропласта (от 1 до 16). По средней линии хлоропластов у спирогиры расположены многочисленные пиреноиды. Ядро крупное с ясно заметным ядрышком. У спирогиры известны покоящееся состояние вегетативных клеток, служащиеся для размножения - апланоспоры, акинеты, которые образуются из вегетативных клеток путем сокращения их содержимого и развития вторичной оболочки.

Зигнема (*Zygnema*), ее без труда можно узнать по двум крупным хлоропластам звездчатой формы. В центре клетки, между хлоропластами лежит ядро.

Порядок Десмидиевые (Desmidiales)

Десмидиевые в основном одноклеточные водоросли, реже встречаются колонии, образующие длинные нити. Типичная клетка состоит из двух половинок, полуклеток, соединенных между собой более узкой частью- перешейком. Симметрия очертаний клеток отражается на симметрии протопласта и хлоропластов. Ядро у большинства видов десмидиевых занимает центральное положение, располагаясь посередине между хлоропластами двух половинок.

Внешний вид зависит от того, с какой стороны их рассматривать. Клетки обладают слизистой оболочкой с порами, открытие которых регулируется клеткой. Поры служат для выделения отбросов и предохранения клетки нежелательных потерь клеточного вещества. Десмидиевые водоросли способны двигаться с помощью особой слизи, которая выделяется через спе-циальные поры, размещенные на концах клеток.

Род Клостериум (*Closterium*) - клетки одиночные, имеют форму полумесяца, без перетяжек, ядро находится в цитоплазматическом мостике, в каждом рожке полумесяца - по хроматофору.

Класс Харовые (Charophyceae)

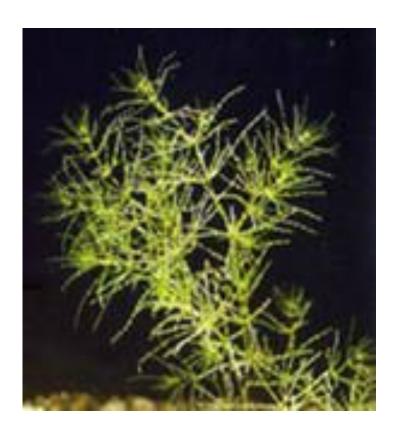
Класс насчитывает около 300 видов. Харовые водоросли, харофиты, лучицы, своеобразные растения напоминают по внешнему виду хвощи.

Растения пресновидные, макрофиты. Предпочитаютводоемы, богатые солями кальция. Высота слоевища от 20-30 см до 1 м. Тонкое многоклеточное слоевище состоит из центрального таллома и отходящих мутовчатых ответвлений. Прикрепление к субстрату при помощи ризоидов.

Членисто-мутовчатое строение выражается в том, что на основных побегах, на некотором расстоянии друг от друга располагаются мутовки коротких равновеликих боковых побегов, также членистого строения.

Место расположения мутовок - узлы. Каждое междоузлие - одна многоядерная членистая клетка длиной до нескольких см. Снаружи междоузлие покрыто слоем специальных клеток - корой.

Наибольшее своеобразие в строении органов полового размножения.


Женский орган - оогоний, мужской - антеридий.

В водоемах нашей зоны наиболее распространены роды:

Нителла (*Nitella*). Отличается разветвленными «листьями», членики разветвлений обычно одноклеточные. Половые органы располагаютсяна узлах разветвлений «листа», выше - антеридий, а ниже его - один илинесколько оогониев. Коры на «стеблях» нет.

Хара (*Chara*). «Листья» с «прилистниками», хорошо развита одно-слойная и многослойная «кора». Половые органы обычно располагаются парами. Распространены **хара** вонючая (*Chara foetida*) — тонкостебельное жесткое растение с длинными «листьями» - и **хара ломкая** (*Chara fragillis*), отличающаяся неветвящимися «листьями».

Блестянка гибкая или Нителла (Nitella flexilis)

Хара ломкая (Chara fragilis

Хара обыкновенная (Chara vulgaris.