ВЫЧИСЛИМЫЕ ФУНКЦИИ И ИХ ПРЕДСТАВЛЕНИЯ В ТЕОРИИ АЛГОРИТМОВ

КВАЛИФИКАЦИОННАЯ РАБОТА СТУДЕНТКИ 5 КУРСА 591 ГРУППЫ ПРОХОРОВОЙ КСЕНИИ

Вычислимые функции

1	<u>Формализация понятия</u> <u>алгоритма</u>
2	Рекурсивные функции
3	Изучение темы в школе
4	Программный продукт «Вычислимые функции»

Вычислимые функции

Цель исследования –

- изучение теоретических положений вычислимости функций,
- исследование рекурсивных функций,
- разработка элективного курса «Вычислимые функции»,
- создание программной поддержки элективного курса «Вычислимые функции», которая является демонстрационной и практической составляющей этого курса.

Формализация понятия алгоритма

 Функция с натуральными аргументами и значениями называется вычислимой, если существует алгоритм, ее вычисляющий

(Верещагин Н.К.)

• Алгоритм — это процесс последовательного построения величин, идущий в дискретном времени таким образом, что в начальный момент задается исходная конечная система величин, а в каждый следующий момент система величин получается по определенному закону (программе) из системы величин, имевшихся в предыдущий момент времени (Мальцев А.И.)

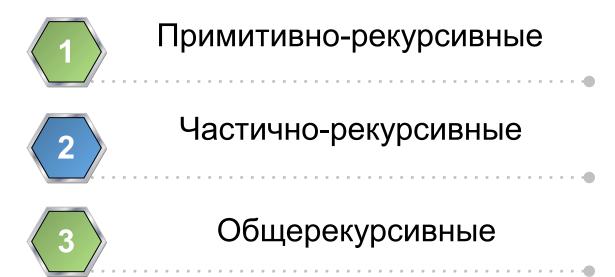
Формализация понятия алгоритма

Классификация алгоритмических моделей:

- ❖ Теория вычислимых функций (Клини, Черч, Гедель)
- ❖ Абстрактные машины (машины Тьюринга, Поста)
- Комбинаторные модели (алгоритмы Маркова)

Формализация понятия алгоритма

Требования к понятию алгоритма:


- Дискретность
- Детерминированность
- Элементарность шагов
- Направленность алгоритма
- Массовость алгоритма

РЕКУРСИВНЫЕ ФУНКЦИИ

ПРИМИТИВНО-РЕКУРСИВНЫЕ ФУНКЦИИ

10011110101010101010

], [010111110001

Базис (элементарные функции):

- ❖ Константа 0
- ❖ Функции следования x' = x + 1
- \diamondsuit Функция выбора $I_m^n(x_1, x_2 ... x_n) = x_m$, где $1 \le n$

Операторы (операции над функциями):

- \bullet Оператор суперпозиции S_m^n $S_m^n = (h, g_1, ..., g_m) = h(g_1(x_1, ..., x_n), ..., g_m(x_1, ..., x_n)) = f(x_1, ..., x_n)$
- \diamond Оператор примитивной рекурсии R_n

$$f(x_1,...,x_n,y) = R(g(x_1,...,x_n),h(x_1,...,x_n,y,z))$$

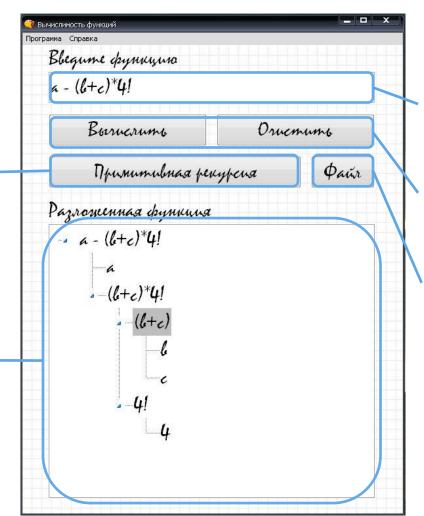
Функция называется примитивно-рекурсивной, если она может быть получена из константы 0, функции следования и функции выбора с помощью конечного числа применений операторов суперпозиции и примитивной рекурсии.

Ограниченный оператор минимизации:

наименьшему
$$y \le z$$
, такому, что $P(x_1, ..., x_n, y)$ истинно, если такое у существует; z в противном случае.

Ограниченный оператор минимизации примитивнорекурсивен!

- Функция называется **частично-рекурсивной**, если она может быть построена из простейших функций $0, x' = x + 1, I_m^n$ с помощью конечного числа применений *операторов суперпозиции*, *примитивной рекурсии* и μ -оператора.
- Частично-рекурсивная функция называется общерекурсивной, если она всюду определена.

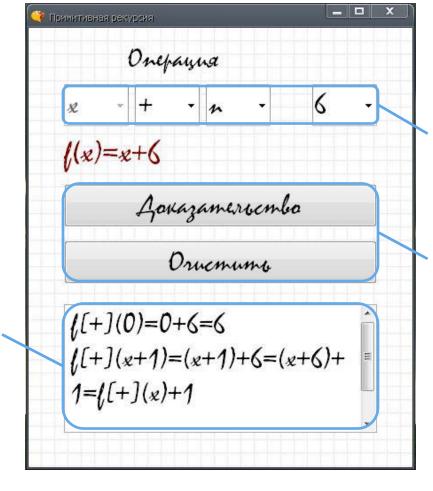

Тематическое планирование курса

No	T	Часы		
Π/Π	Тема	всего	теория	практика
1.	Введение в теорию алгоритмов.	1	1	-
2.	Понятие и свойства алгоритма. Классификация алгоритмических моделей.	1	0,5	0,5
3.	Машина Тьюринга. Вычислимость по Тьюрингу.	2	0,5	1,5
4.	Примитивно-рекурсивные функции. Метод индукции в математике.	3	1	2
5.	Рекурсия в программировании	5	1	4
6.	Вычислимые функции.	3	1	2
7.	Общая, примитивная и частичная рекурсии. Тезис Черча.	2	0,5	1,5
	Всего:	17	5,5	11,5

Программный продукт

Кнопка вызова окна примитивной рекурсии

Дерево разложения функции с учетом приоритетов операций



Строка ввода функции

Кнопки для работы с функцией

Чтение строки из файла

Списки для ввода элементарной функции

Кнопки работы с окном

Доказательство примитивности элементарной функции

Электронное пособие

