Выделение и визуализация нуклеиновых кислот и белков

Нуклеиновая кислота (от лат. *nucleus* — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов.

Существует два типа нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза — в ДНК, рибоза — в РНК) и остаток фосфорной кислоты.

Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, — аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т).

Пары, связанные водородными связями, жестко определены: фрагмент **A** всегда взаимодействует с **T**, а **Г** – с **Ц**. Пара **A-T** связана двумя водородными связями, а пара **Г-Ц** – тремя связями.

$$N$$
 — N — N

Структура РНК во многом напоминает ДНК, отличие в том, что в основной цепи фрагменты фосфорной кислоты чередуются с рибозой, а не с дезоксирибозой (рис.). Второе отличие – к боковому обрамлению присоединяется гетероциклурацил (У) вместо тимина (Т), остальные гетероциклы А, Г и Ц те же, что у ДНК. Урацил отличается от тимина отсутствием метильной группы, присоединенной к циклу, на рисунке эта метильная группа выделена красным цветом.

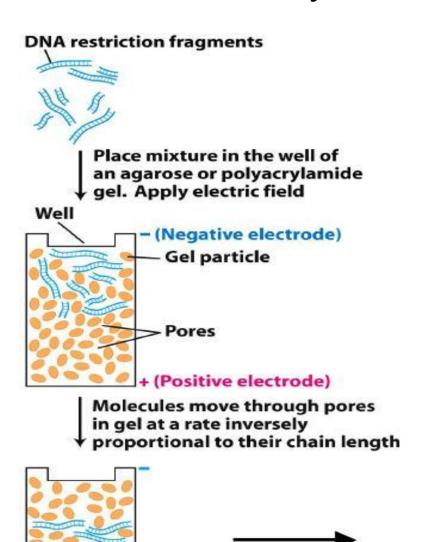
H₃C C NH HC NH HC NH HC NH NH NH V рацил

Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т. е. синтез точно такой же молекулы ДНК (репликация).

При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов.

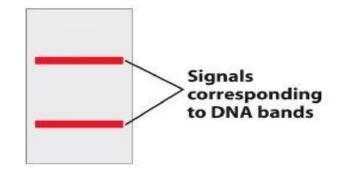
Нуклеиновые кислоты являются составной частью сложных белков – нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений.

Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях рН несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот — способность к взаимодействию по типу ионной связи с основными белками(гистонами), ионами металлов (преимуществе нно с Mg²+), а также с полиаминами (спермин, спермидин) и путресцином.


Поэтому для выделения нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекула и белков и отрицательно заряженными молекулами нуклеиновых кислот.

Для этого измельченный путем гомогенизации биоматериал обрабатывают крепкими солевыми растворами (10% раствор хлорида натрия) с оследующим осаждением нуклеиновых кислот этанолом.

В настоящее время для выделения нуклеиновых кислот в нативном состоянии пользуются более «мягким» фенольным методом, основанным на обработке нейтрального забуференного раствора нуклеопротеинов фенолом. Обычно эту процедуру проводят в присутствии веществ, вызывающих денатурацию белкового компонента, например до-децилсульфата (ДСН) или салицилата натрия, затем смесь подвергают центрифугированию. При этом денатурированный белок попадает в фенольную фазу, а нуклеиновые кислоты остаются в водной среде, из которой их осаждают на холоде добавлением 2–3 объемов этанола.


Этим методом удается получить достаточно очищенные препараты нуклеиновых кислот.

Визуализация НК

DNA fragments are stained

with Ethidium bromide dye

