ЗАДАЧА БУМАЖНЫЙ МОСТ

Шаяхмедова Алина и Грунина Вера

УСЛОВИЕ ЗАДАЧИ:

• Сконструируйте мост из листа бумаги форматом А4 с пролетом 280мм. Возможно использование небольшого количества клея. Введите параметры, характеризующие прочность моста и оптимизируйте их для создания наиболее прочного моста.

ЦЕЛИ ЗАДАЧИ:

- Найти наиболее прочную форму моста и оптимизировать ее.
- Определить наиболее прочные конструкции для разных типов нагрузки .

ВИДЫ ДЕФОРМАЦИИ

ВИДЫ ДЕФОРМАЦИИ

модуль юнга

 Модуль Юнга — физическая величина, характеризующая свойства материала сопротивляться растяжению или сжатию при упругой деформации.

$$E=(F/S)^*(x/l)$$

Где E — модуль упругости

F — сила

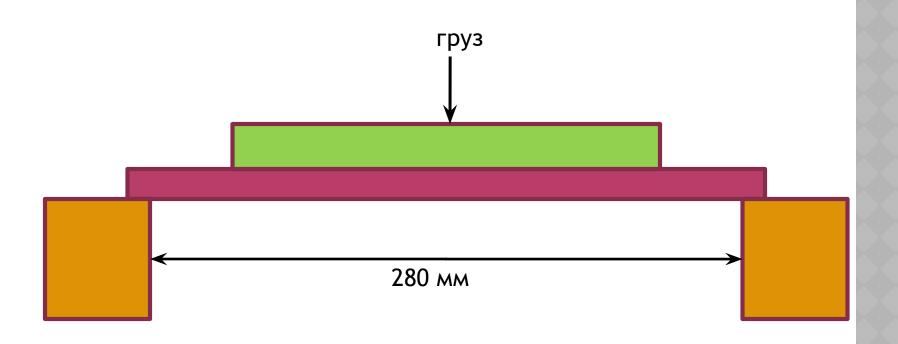
S — площадь поверхности, по которой распределено действие силы,

l — длина деформируемого стержня,

х — модуль изменения длины стержня в результате упругой деформации

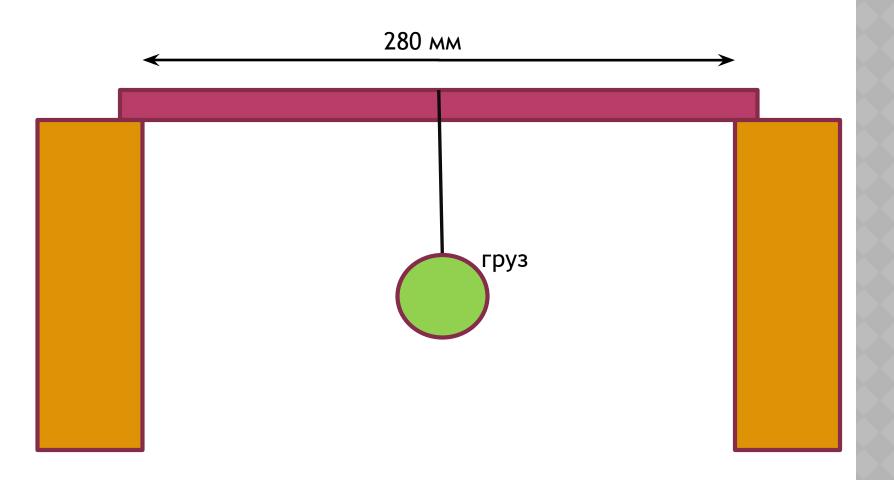
ЗАКОН ГУКА

 Закон Гука — уравнение теории упругости, связывающее напряжение и деформацию у пругой среды.


F=kx

где k -коэффициент упругости или жесткость пружины

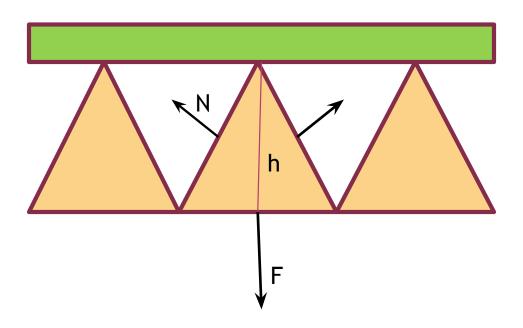
- x удлинение пружины или величина деформации пружины
 - F сила упругости


ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Воспользуемся следующей моделью.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

• Когда измеряем точечную нагрузку


ЗАКОН ГУКА

• Есть доска (мост), на ней груз, если мы рядом с этой доской положим еще одну такую же, то по закону Гука коэффициент изменится в 2 раза и нагрузка уменьшится, соответственно тоже в 2 раза. Основываясь на теории, мы решили построить модель «Beep».

МОДЕЛЬ МОСТА «BEEP»

МОДЕЛЬ «BEEP»

МОДЕЛЬ «BEEP»

Чем больше треугольничков (ребер) будет у модели, тем устойчивей будет модель и больший груз выдержит, так как нагрузка будет распределяться на разные точки.

МОДЕЛЬ «ВЕЕР»


 С точки зрения теории мост неплохой, но так как он сложен в гармошку его ребра под действием силы будут разъезжаться. Поставим эксперимент

МОДЕЛЬ «ВЕЕР»

Результаты опытов с мостом «Веер»

Номер	Количес	ширина	нагрузка	нагрузка	Точечная
модели	ТВО	(MM)	на	на	нагрузка
	ребер		участок	участок	на нитке
			205мм	77mm	
			(гр)	(гр)	
Nº1	3	90	39,2	53,9	11,6
№2	4	95	215,2	302,3	41,5
Nº3	5	65	201,5	309,2	57,9
Nº4	6	75	199,8	379,8	98,3

МОДЕЛЬ «ПАРАЛЛЕЛЕПИПЕД»

МОДЕЛЬ «ПАРАЛЛЕЛЕПИПЕД»

Эта модель наиболее прочная, так как у нее несколько слоев, что придает большую жесткость конструкции, но на ней груз менее устойчив.

МОДЕЛЬ

«ПАРАЛЛЕЛЕПИПЕД»								
Опыты с моделью параллелепипед								
Диаметр	Количес	<u>-</u>		Нагрузка				
(диагона		(MM)	на	на				
ль) (мм)	слоев		участок	участок				

42,4

21,2

14,1

10,6

участок

205_{MM}

(rp)

298,9

372,4

688,5

983

1

2

5

6

60

30

20

15

Точечная

нагрузка

(нитка)

25,6

187

346,1

558,7

участок

77MM

(rp)

94,7

214,1

409

744,1

РАССУЖДЕНИЕ

• Можно было еще провести эксперименты с моделью «трубочка», но в силу того, что поверхность совсем неустойчивая, а результаты будут схожи с моделью «параллелепипед», мы решили не проводить с ней экспериментов.

СРАВНЕНИЕ

После проведения ряда экспериментов можно сказать, что наиболее прочная модель это модель «параллелепипед».

ВЫВОД Из ряда проведенных экспериментов мы выяснили, что наиболее прочная модель это модель «параллелепипед»

Спасибо за внимание!

