Презентация на тему «Обращение с отходами производства и потребления»

Выполнил студент 11-3ЭА Кухарь Андрей Александрович

* Законодательная и нормативная правовая база в системе обращения с отходами и потребления

- *Отворы это остатки продуктов или дополнительный продукт, образующиеся в процессе или по завершении определенной деятельности и не используемые в непосредственной связи с этой деятельностью.
- * Различают отходы производства и отходы потребления.
- *Вопросы обращения с отходами регулируется федеральным законом
- *«Об отходах производства и потребления»
- * подзаконными актами (ссылка на ФЗ «Об отходах производства и потребления»).

*Отходы производства - это остатки сырья, материалов, веществ, изделий, предметов, образовавшиеся в процессе производства продукции, выполнения работ (услуг) и утратившие полностью или частично исходные потребительские свойства. Например, металлическая стружка, древесные опилки, бумажные обрезки.

*Отходы потребления, к которым относят в основном твердые, порошкообразные и пастообразные отходы, образующиеся в результате жизнедеятельности работников предприятия. Например, мусор, стеклобой, лом, макулатуру, пищевые отходы, тряпье и др.

*Отходы, которые содержат вредные вещества, обладающие опасными свойствами (токсичностью, взрывоопасностью, пожароопасностью, высокой реакционной способностью) или содержащие возбудителей инфекционных болезней, либо которые могут представлять непосредственную или потенциальную опасность для окружающей природной среды и здоровья человека самостоятельно или при вступлении в контакт с другими веществами.

*Опасные отходы в зависимости от степени их вредного воздействия на окружающую природную среду и здоровье человека подразделяются на классы опасности в соответствии с критериями/

Рис. 1. Основные требования законодательства по обращению с опасными отходами на предприятии

Федеральный закон «ОБ ОТХОДАХ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ» (1998 г.)

Ведомственные правовые акты

Приказы МПР России

- от 15.06.2001 № 511
 (в рег. Минюста России не нуждается)
- от 11.03.2002 № 115 (Минюст России от 9.07.2002 №3553)
- от 02.12.2002 № 785 (Минюст России от 16.01.2003№ 4128)
- от 02.12.2003 № 786 (Минюст России от 09.01.2003№ 4107)
- от 09.07.2003 № 575
 (в рег. Минюста России не нуждается)
- от 30.07.2003 № 663 (Минюст России от 14.08.2003 №4981)

Приказы Ростехнадзора

- от 29.08.2004 № 13
- от 28.01.2005 № 42
 (Минюст России от 16.03.2005 № 6401)
- от 09.02.2005 № 85

Постановления Росстата

- от 30.12.2004 № 157
- от 17.01.2005 № 1

Рис. 2. Действующие нормативные правовые акты, регламентирующие вопросы организации экологически безопасного обращения с отходами

* Обращение с опасными отходами

Опасные свойства отходов

*Отходы, содержащие *вредные вещества*, которые обладают опасными свойствами или содержат возбудителей инфекционных болезней, а также могут представлять потенциальную опасность для окружающей природной среды (ОПС) и здоровья человека самостоятельно или при вступлении в контакт с другими веществами, называют опасными отходами.

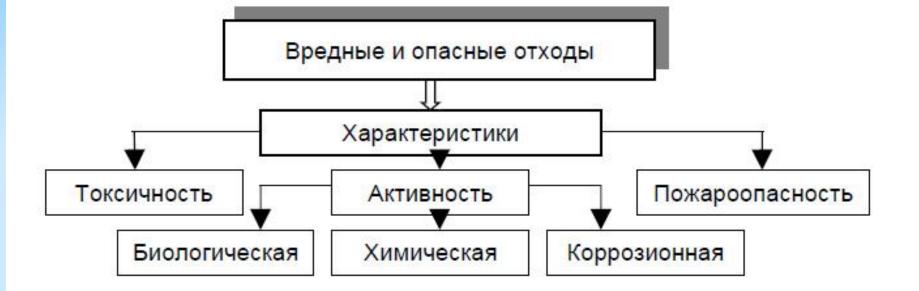


Рис. 1. Основные характеристики вредных и опасных отходов

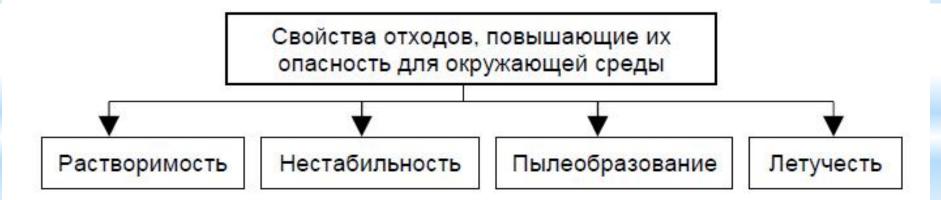


Рис. 2. Основные свойства отходов, повышающие их экологическую опасность

*Опасные свойства отходов

- *Токсичность определяется как способность вызвать серьезные, затяжные или хронические заболевания людей, включая раковые заболевания, при попадании внутрь организма через органы дыхания, пищеварения или через кожу.
- *Пожароопасность определяется по соответствующим ГОСТам, устанавливающим требования по пожарной безопасности и/или наличием хотя бы одного из следующих свойств:
- □ способностью жидких отходов выделять огнеопасные пары при температуре не выше 60°С в закрытом сосуде или не выше 65,5°С в открытом сосуде;
- способностью твердых отходов, кроме классифицированных как взрывоопасные, легко загораться либо вызывать или усиливать пожар при трении;
- способностью отходов самопроизвольно нагреваться при нормальных условиях или нагреваться при соприкосновении с воздухом, а затем самовозгораться;
- опособностью отходов самовозгораться при взаимодействии с водой или выделять легковоспламеняющиеся газы в опасных количествах.

- *Взрывоопасность определяется как способность твердых или жидких отходов (либо смеси отходов) к химической реакции с выделением газов таких температуры и давления и с такой скоростью, что вызывает повреждение окружающих предметов, либо по соответствующим ГОСТам, устанавливающим требования о взрывоопасное^{ТМ}.
- *Высокая реакционная способность определяется как содержание органических веществ (органических пероксидов), которые имеют двухвалентную структуру -0-0- и могут рассматриваться в качестве производных перекиси водорода, в котором один или оба атома водорода замещены органическими радикалами.
- *Содержание возбудителей инфекционных болезней определяется как наличие живых микроорганизмов или их токсинов, способных вызвать заболевания у людей или животных.
- *воздействие отходов зависит также от их качественного и количественного состава. В целом отходы представляют собой неоднородные по химическому составу, сложные многокомпонентные смеси веществ, обладающих разнообразными физико-химическими и физико-механическими свойствами. Общая направленность химического и вещественного состава отходов обусловлена взаимодействием компонентов, биологическим разложением и ассимиляцией веществ (Потапов, 2004).

* Физико-химические и физико-механические свойства

*Молекулярная масса вещества зависит от физико-химических свойств, лежащих в основе биологической активности, и определяет плотность, температуру кипения, летучесть, скорость диффузии через мембранный барьер, способность адсорбции и др. Вещества с молекулярной массой более 300 плохо проникают через кожу, а низкомолекулярные (аммиак и др.) слабо задерживаются фильтром гражданского противогаза (ГП5).

Токсикологами отечественной школы установлены закономерности между указанными выше отношениями, что позволило для некоторых ядов ориентировочно определить ряд параметров токсикометрии.

*Химическое строение и свойства химических веществ определяют их действие и степень токсичности. Зачастую вещества, близкие по химическому строению, обладают однотипным эффектом и наоборот.

Обычно менее токсичны соединения с простыми связями, чем с двойными; вещества с прямой углеродной цепью более токсичны, чем с разветвленной. Циклические соединения, как правило, токсичнее ациклических. Наличие в молекуле ядовитых веществ гидроксильных групп снижает токсичность, введение же галогенов, нитро-, нитрозо-, тио-ловых и других групп ее повышает.

- *Физико-химические свойства ядовитых веществ (физическое состояние, растворимость, температура кипения, температура плавления, летучесть, плотность пара, удельный вес и т.д.) свидетельствуют об их способности проникать в организм, характере и механизме действия, а также об их поведении в окружающей среде, особенности заражения ими и их распространения.
- *Физические свойства ядовитых веществ определяют их агрегатное состояние в среде выхода при аварийной ситуации. Так, во время взрыва жидкие вещества переходят в парообразное, аэрозольное или капельно-жидкое состояние. Газ, находящийся под давлением, становится летучей жидкостью, быстро испаряющейся на воздухе. Твердые вещества при взрыве измельчаются и в виде пыли оказываются в окружающей среде, а при возгорании они превращаются в дым. При этом твердые аэрозоли могут иметь различную степень дисперсности. Переход многих твердых и жидких ядовитых веществ в состояние газа, пара, твердого и жидкого аэрозоля (дым, туман) ускоряет всасывание их легкими и, стало быть, способствует повышению токсичности.

- *Стойкие ядовитые вещества твердые или жидкие вещества с высокой температурой кипения (свыше 130 °C), малой летучестью, большой плотностью паров по отношению к воздуху.
- *Нестойкие ядовитые вещества газы или жидкие вещества с температурой кипения до 130 °C, большой летучестью, упругостью паров. У одних представителей плотность паров больше единицы, у других меньше.

*Большинство ядовитых веществ относится к нестойким химическим соепинениям

* Биологические особенности организма человека при взаимодействии с ядами

- *Состояние органов и систем существенно влияет на характер взаимодействия яда с организмом:
- характер питания: голодание, авитаминоз, похудание повышают чувствительность к токсичным агентам.
- •при физическом напряжении, утомлении у лиц, перенесших тяжелое заболевание, а также у лиц, перенесших тяжелое заболевание, а также у лиц с болезнями нервной системы, печени, особенно почек.
- возрастные особенности организма могут влиять на развитие токсического процесса
- (например, у детей резорбция ядов через легкие и кожу более быстрая и полная, а защитная функция кожи слабая. Компенсаторные возможности сердечно-сосудистой системы и дыхания ограничены, хотя дети более устойчивы к гипоксии. К некоторым ядам (окись углерода, дихлорэтан, гранозан) дети более устойчивы, чем взрослые, и немее резистентны к

* Опасность отходов для окружающей природной среды (экотоксичность)

- *Класс токсичности отходов определяют согласно Классификатору токсичных промышленных отходов. Наибольшую угрозу для человека и всей биоты представляют опасные отходы, содержащие химические вещества I и II класса токсичности. В первую очередь это отходы, в составе которых присутствуют радиоактивные изотопы, диоксины, пестициды, бенз(а)пирен и некоторые другие вещества.
- *Радиоактивные отходы (РАО) твердые, жидкие или газообразные продукты ядерной энергетики, военных производств, других отраслей промышленности и систем здравоохранения, содержащие радиоактивные изотопы в концентрации, превышающей утвержденные нормы.

- *Диоксинсодержащие отходы образуются при сжигании промышленного и городского мусора, бензина со свинцовыми присадками и как побочные продукты в химической, целлюлознобумажной и электротехнической промышленности.
- *Установлено, что диоксины образуются также при обезвреживании воды хлорированием, в местах хлорного производства, в особенности при производстве пестицидов.
- *Диоксины, относящиеся к классу хлоруглеводородов, являются самыми токсичными из синтезированных человеком веществ. Характеризуясь мутагенным, канцерогенным, эмбриотоксическим (отравление плода или внутриутробное отравление эмбриона) действием, они подавляют иммунную систему человека, вызывая тем самым «диоксиновый СПИД».
- *При получении человеком высоких доз (например, при вдыхании аэрозолей, через продукты питания) диоксины вызывают постепенное истощение и последующую смерть без наличия при этом явно выраженных патологических симптомов («синдром изнурения»).

* Классификация экотоксикантов, влияние химического загрязнения на биоразнообразие и на человека

и Полияде ские угл Хлорзам (три- и т

Токсиканты	Основные источники	Типы химических стрессов
Полиядерные ароматиче- ские углеводороды (ПАУ)	Образуются при неполном сгорании древесины, угля и нефтепродуктов	Возникновение раковых опухолей
Хлорзамещенные алкены (три- и тетра-хлорэтилены)	Химчистки, использующие эти вещества в качестве рас- творителей	Канцерогенез, мутагенез и воздействие на центральную нервную систему
Хлорированные фенолы (три-и пента-хлорфенолы)	Коммерческие средства со- хранения древесины	Повреждения печени и почек, хлоракне, паралич конечностей, влияние на сердце и слизистые оболочки
Хлороформ и другие про- дукты хлорирования питье- вой воды	Использующие хлорирова- ние станции водоподготовки	Обуславливают канцерогенез, негативно влияют на печень и сердце
Полихлорированные бифенилы (ПХБ)	Трансформаторные и сма- зочные масла, пластифика- торы	Накапливаются в жировых тканях биоты и вызывают токсическое действие
Полихлорированные дибен-	Микропримеси в ПХБ,	Являются самыми токсич-

Основные типы неорганических экотоксикантов, их источники и обусловленные ими стрессы

Токсиканты	Основные источники	Типы химических стрессов	
Газы (CO, N0 ₂ , S0 ₂)	Выбросы промышленных, энергетических предприятий и автотранспорта	Моноксид углерода обуславливает ки- слородную недостаточность. Диоксиды азота и серы вызывают болезни легких, а S0 ₂ способствует некрозу листьев рас- тений	
Нитраты и нитриты	Азотные удобрения	Высокие концентрации в питьевой воде вызывают метгемоглобинемию («синдром голубого ребенка»)	
Алюминий	Сточные воды	При низких значениях рН приводит к гибели организмов в водных системах	
Кадмий	Производство цинка и спла- вов, гальваника и сигареты	Токсичность и канцерогенез	
Медь	Кабельное производство, электроника	Токсична при высоких концентрациях	
Мышьяк	Пестициды, сплавы, зола	Проявляет токсичность и канцерогенез	
Никель	Сплавы, покрытия, аккумуля- торы	Вызывает образование раковых опухо- лей и проявляет общую токсичность	
Ртуть	Производство щелочи и хлора, добыча золота, электроника, катализ	Высокотоксична и легко накапливается в организмах, проявляя разрушающее воздействие на внутренние органы и центральную нервную систему	
Свинец	Бензин, краски, аккумулято- ры, керамика	Токсичен, вызывает анемию и психические расстройства	
Селен	Электроника, сплавы, стекло	Весьма токсичен	
Хром	Катализаторы, краски, сплавы	Cr(VI) — канцерогенен и более токсичен, чем Сг(III)	
Цинк	Гальваника, сплавы	Токсичен, но меньше, чем вышеприведенные металлы	

Таблица 3 Основные типы металлоорганических экотоксикантов, их источники и обусловленные ими стрессы

9 9

Токсиканты	Основные источники	Типы химических стрессов Вызывают половые превращения моллюсков Триметильные и три- этильные производные олова яв- ляются нейро-токсикантами	
Производные три- бутил- и трифенил- олова	Краски для судов, стабилиза- торы ПВХ, каталитические процессы		
Производные ме- тилртути	Используются как биоциды и образуются при метилировании в окружающей среде	Соединения метилртути и некоторые другие органические производные ртути вызывают существенные повреждения печени и центральной нервной системы у биоты и человека	
Алкильные производные свинца	Автомобильное топливо	Ме ₄ РЬ и Ет ₄ РЬ, попадая в организм, претерпевают превращения в производные триалкилсвинца и нарушают нормальные функции нервной системы	

- *В современной экологической токсикологии существует понятие «суперэкотоксиканты» химические вещества, вызывающие наиболее серьезные проблемы со здоровьем у человека, обусловленные поступлением в окружающую среду этих ядов: например, диоксины и соединения ртути.
- *Диоксины краткое название большой группы высокотоксичных экотоксикантов полихлорированных дибензодиоксинов (ПХДЦ, I) и дибензофуранов (ПХДФ, II)
- *Ртуть и ее соединения до осуществленной человеком научно-технической революции не оказывали существенного влияния на окружающую среду, т. к. их концентрации в природе были крайне малы. По мере развития цивилизации, исследования и применения ртути и ее соединений становились все более интенсивными. Это антропогенное влияние существенно нарушило биогеохимический цикл ртути, в результате чего биосфера наряду с влиянием других экотоксикантов стала испытывать и негативные эффекты ртути и ее производных.

В настоящее время наиболее распространенными в окружающей среде являются: металлическая ртуть Hg, ее неорганические соединения — соли двухвалентной ртути типа HgX, и органические производные — ртутьорганические соединения типа RHgX и RiHg.

Пары металлической ртути в концентрациях 0,01-0,03 мг/м³ вызывают меркуриализм — болезнь, на первую стадию которой указывают снижение мышечной активности, быстрая утомляемость и повышенная возбудимость. На второй стадии наблюдаются головные боли, беспокойство, ослабление памяти, раздражительность и неуверенность в себе. На третьей стадии нарушаются сердечная деятельность, периферическая нервная система, секреторная функция желудка, проявляются головокружения, потливость, гиперфункция щитовидной железы. Рост стажа работы с ртутью приводит к развитию заболевания, при котором у женщин растет число выкидышей, преждевременных родов и мастопатии; у новорожденных имеют место пороки развития, скрытые отеки и недостаточность защитных механизмов.

- *Особую тревогу вызывают метилртутные соединения (содержащиеся, главным образом, в дарах моря), которые хорошо поглощаются и накапливаются человеческим организмом.
- *Таким образом, проблема влияния химических стрессоров на окружающую среду и человека приоритетна в плане сохранения биоразнообразия и здоровья человечества.

* Отнесение опасных отходов к классам опасности для окружающей среды

- *Задача определения класса опасности отходов является одной из ключевых при организации работ по лицензированию деятельности по сбору, использованию, обезвреживанию, размещению и транспортированию опасных отходов (далее деятельность по обращению с отходами).
- *В настоящее время в Российской Федерации определение класса опасности отходов осуществляется по двум методикам: в соответствии с Критериями отнесения опасных отходов к классу опасности для окружающей среды, утвержденными приказом МПР России от 15.06.2001 № 511 (далее Критерии), и СП 2.1.7. 1386-03 «Санитарные правила по определению класса опасности токсичных отходов производства и потребления» (далее -СП 2.1.7.1386-03), утвержденными постановлением главного санитарного врача РФ от 16.06.2003 № 144.

Классы опасности распространенных промышленных отходов

Отход	Класс опасности по ФККО	Класс опасности СП 2.1.7.1386-03
Мусор от бытовых помещений орга- низаций несортированный (исключая крупногабаритный)	4 (малоопасные)	2 (высокоопасные)
Мусор строительный от разборки зданий	4 (малоопасные)	3 (умеренно опасные)
Электрические лампы накаливания отработанные и брак	5 (практически не- опасные)	3 (умеренно опасные)

Заключение

Поскольку сфера государственно-правового регулирования обращения с отходами имеет огромную значимость, для индивидуальных предпринимателей и юридических лиц (за исключением отнесенных к субъектам малого и среднего предпринимательства), в результате хозяйственной и иной деятельности которых образуются отходы, утверждаются предельно допустимые количества отходов конкретного вида, направляемых на размещение в конкретных объектах хранения отходов и объектах захоронения отходов с учетом экологической обстановки на территории, на которой расположены такие объекты.

Индивидуальные предприниматели и юридические лица, осуществляющие деятельность в области обращения с отходами, обязаны вести в установленном порядке учет образовавшихся, использованных, обезвреженных, переданных другим лицам или полученных от других лиц, а также размещенных отходов. На основе этих данных составляется государственный кадастр отходов, который включает в себя федеральный классификационный каталог отходов, государственный реестр объектов размещения отходов, а также банк данных об отходах и о технологиях использования и обезвреживания отходов различных видов.

Одной из главных целей государственного регулирования в этой области является уменьшение количества отходов и вовлечение их в хозяйственный оборот. С этой целью применяется платность размещения отходов и методы экономического стимулирования рационального обращения с отходами, такие как уменьшение платы за размещение отходов при условии внедрения технологий, ведущих к снижению количества отходов.

Спасибо за внимание!

