Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Первичные описательные статистики

Содержание

ЗадачаВозраст педагогических работников (в годах): 18; 38; 40; 28; 29; 26; 38; 34; 22; 28; 30; 22; 23; 35; 33; 27; 24; 30; 32; 49; 37; 28; 25; 29; 26; 31; 24; 29; 27; 32; 25;
Первичные описательные статистики ЗадачаВозраст педагогических работников (в годах): 18; 38; 40; 28; 29; 26; 38; Меры центральной тенденцииМода (Мо) - значение, которое чаще других встречается в выборке.Если Меры центральной тенденции: МодаВ интервальном вариационном ряду:1)Данные уже сгруппированы в интервалы2) Найти Меры центральной тенденцииМедиана (Md) - значение признака, которое делит ранжированное множество данных Меры центральной тенденции: МедианаВ интервальном вариационном ряду:1) Если данные уже сгруппированы в Меры центральной тенденцииСреднее арифметическое - частное от деления всех значений (Хi) на Выбор меры центральной тенденции«Средняя температура по больнице?»Мода и медиана «не чувствительны» к Меры изменчивостиРазмах (Р) – интервал между максимальным и минимальным значениями признака Меры изменчивостиСреднее абсолютное отклонение (mad) – это среднеарифметическое разницы (по абсолютной величине) Меры изменчивостиДисперсия (S²) — мера изменчивости, пропорциональная сумме квадратов отклонений значений от Свойства дисперсииЕсли все значения равны друг другу, дисперсия равна 0 (нет рассеяния Меры изменчивостиСтандартное отклонение (s) или (Sn) — мера изменчивости, являющаяся положительным значением Асимметрия и эксцессАсимметрия и эксцесс характеризуют распределение признака в выборке, являются 3 Меры положенияКвантиль — точка на числовой оси измеренного признака, которая делит всю Какие описательные статистики можно применять…НА ШКАЛЕ НАИМЕНОВАНИЙ?НА РАНГОВОЙ ШКАЛЕ?НА ШКАЛЕ ИНТЕРВАЛОВ?НА ШКАЛЕ РАВНЫХ ОТНОШЕНИЙ? Метрика — функция, вводящая понятие расстояния между двумя элементами a и b
Слайды презентации

Слайд 2 Задача
Возраст педагогических работников (в годах):

18; 38; 40;

ЗадачаВозраст педагогических работников (в годах): 18; 38; 40; 28; 29; 26;

28; 29; 26; 38; 34; 22; 28; 30; 22;

23; 35; 33; 27; 24; 30; 32; 49; 37; 28; 25; 29; 26; 31; 24; 29; 27; 32; 25; 29; 29; 52; 58; 44; 39; 57; 19; 25.

Насколько молод коллектив?

Слайд 3 Меры центральной тенденции
Мода (Мо) - значение, которое чаще

Меры центральной тенденцииМода (Мо) - значение, которое чаще других встречается в

других встречается в выборке.

Если все значения встречаются одинаково часто

— мода отсутствует
Если два соседних значения имеют одинаковую частоту — мода между ними
Выборка считается бимодальной, если два несмежных значения имеют наибольшую частоту

Слайд 4
Меры центральной тенденции: Мода
В интервальном вариационном ряду:

1)Данные уже

Меры центральной тенденции: МодаВ интервальном вариационном ряду:1)Данные уже сгруппированы в интервалы2)

сгруппированы в интервалы
2) Найти интервал с максимальной частотой —

модальный
3) Считать моду по формуле:
Xmo — нижняя граница модального интервала;
h — ширина интервала;
m — частоты модального, премодального и постмодального интервалов

В безинтервальном вариационном ряду:

1) Установить соотвествие между значениями Х и их частотой
2) Самое частое значение, или
Mo=Xi
При условии mxi >∀mx≠xi



Слайд 5 Меры центральной тенденции
Медиана (Md) - значение признака, которое

Меры центральной тенденцииМедиана (Md) - значение признака, которое делит ранжированное множество

делит ранжированное множество данных пополам так, что одна половина

оказывается меньше медианы, а другая — больше


Если объем выборки — нечетное число, то медиана…
Если объем выборки четное число, то медиана…

Слайд 6 Меры центральной тенденции: Медиана
В интервальном вариационном ряду:

1) Если

Меры центральной тенденции: МедианаВ интервальном вариационном ряду:1) Если данные уже сгруппированы

данные уже сгруппированы в интервалы,
2) Найти медианный интервал, в

котором накопленная относительная частота пересекает отметку в 50%
3) Считать медиану по формуле:

Xmе - нижняя граница модального интервала;
N - объем выборки;
Mme-1 - накопленная частота интервала перед медианным
h - ширина интервала;
mме - частота медианного интервала

В безинтервальном вариационном ряду:

1) Расположить все значения по возрастанию
2) Медианой будет значение, находящееся в точном центре ряда.

Me=Xi при условии i=(N+1)/2






Слайд 7 Меры центральной тенденции
Среднее арифметическое - частное от деления

Меры центральной тенденцииСреднее арифметическое - частное от деления всех значений (Хi)

всех значений (Хi) на их количество (N)


X=

Свойства среднего:
1) если к каждому значению прибавить число С, то среднее тоже увеличится на число С;
2) если каждое значение умножить на С, то среднее увеличится в С раз



Слайд 8 Выбор меры центральной тенденции
«Средняя температура по больнице?»
Мода и

Выбор меры центральной тенденции«Средняя температура по больнице?»Мода и медиана «не чувствительны»

медиана «не чувствительны» к выбросам (на них не влияет

отдельное большое или малое значение);
Мода нестабильна в малых выборках;
Среднее содержит погрешности на малых выборках с несимметричным распределением
Для характеристики малой выборки выбирайте медиану!

Слайд 9 Меры изменчивости
Размах (Р) – интервал между максимальным и

Меры изменчивостиРазмах (Р) – интервал между максимальным и минимальным значениями признака

минимальным значениями признака
выборка: {1, 2, 3, 4,

5, 6, 7, 7, 8, 9}
Размах=8 N=10

Р = Хмах-Хмин

Слайд 10 Меры изменчивости
Среднее абсолютное отклонение (mad) – это среднеарифметическое

Меры изменчивостиСреднее абсолютное отклонение (mad) – это среднеарифметическое разницы (по абсолютной

разницы (по абсолютной величине) между каждым значением в выборке

и ее средним

mad=

где d = |xi – М| - модуль расстояния;
М – среднее или медиана выборки;
xi – конкретное значение;
N – объем выборки

Слайд 11 Меры изменчивости
Дисперсия (S²) — мера изменчивости, пропорциональная сумме

Меры изменчивостиДисперсия (S²) — мера изменчивости, пропорциональная сумме квадратов отклонений значений

квадратов отклонений значений от среднего

S²=

, для больших выборок



S²= , для малых выборок (>30чел)

Слайд 12 Свойства дисперсии
Если все значения равны друг другу, дисперсия

Свойства дисперсииЕсли все значения равны друг другу, дисперсия равна 0 (нет

равна 0 (нет рассеяния признака);
Если ко всем значениям прибавить

число С, это не поменяет дисперсию;
Увеличение всех значений в С раз увеличивает дисперсию в С2 раз
Применима только для данных метрических шкал! (т.к. является мерой расстояния)

Слайд 13 Меры изменчивости
Стандартное отклонение (s) или (Sn) — мера

Меры изменчивостиСтандартное отклонение (s) или (Sn) — мера изменчивости, являющаяся положительным

изменчивости, являющаяся положительным значением квадратного корня из дисперсии

Для больших

выборок


Для малых выборок

Всегда выражается в исходных единицах признака, в отличие от дисперсии

Слайд 14 Асимметрия и эксцесс
Асимметрия и эксцесс характеризуют распределение
признака

Асимметрия и эксцессАсимметрия и эксцесс характеризуют распределение признака в выборке, являются

в выборке, являются 3 и 4 моментами среднего

Показатели асимметрии и эксцесса.

А= Е=
Свойства асимметрии и эксцесса:
Если А>0 существенно, то среднее>медианы>моды и наоборот, при отрицательной асимметрии Мо>Ме>М
Если Е>0 существенно, то распределение выборки островершинное (большее количество людей набирает близкие к моде баллы); а при Е<0 распределение плосковершинное — т.е больше людей «рассеяны» от центра

Слайд 15 Меры положения
Квантиль — точка на числовой оси измеренного

Меры положенияКвантиль — точка на числовой оси измеренного признака, которая делит

признака, которая делит всю совокупность измерений на две группы

с известным соотношением численности.
Квартили — 3 точки — значения признака, которые делят сортированное по возрастанию множество значений на 4 равных интервала (по 25% выборки в каждом). 2-й квартиль — это медиана.
Процентили - 99 точек - значений признака.... (аналогично делят на отрезки по 1%)
См. накопленные относительные частоты, чтобы понять, каким квантилем является конкретное значение

Слайд 16 Какие описательные статистики можно применять…
НА ШКАЛЕ НАИМЕНОВАНИЙ?
НА РАНГОВОЙ

Какие описательные статистики можно применять…НА ШКАЛЕ НАИМЕНОВАНИЙ?НА РАНГОВОЙ ШКАЛЕ?НА ШКАЛЕ ИНТЕРВАЛОВ?НА ШКАЛЕ РАВНЫХ ОТНОШЕНИЙ?

ШКАЛЕ?
НА ШКАЛЕ ИНТЕРВАЛОВ?
НА ШКАЛЕ РАВНЫХ ОТНОШЕНИЙ?


  • Имя файла: pervichnye-opisatelnye-statistiki.pptx
  • Количество просмотров: 136
  • Количество скачиваний: 0