Слайд 2
История чисел
История записи чисел и систем счисления ведется
с появления счета у людей. Люди изображали количество различных
предметов с помощью засечек или черточек. Их наносили на поверхности, служившие в то время «бумагой»: глиняные дощечки, древесную кору или камни. Первые сведения о таких записях археологи относят к периоду палеолита, то есть к 10-11 тысячелетию до нашей эры. Маленькие дети показывают свой возраст на пальцах. Лётчик сбил самолёт, ему за это рисуют звёздочку, Робинзон Крузо считал дни зарубками.
Числом обозначали некоторые реальные объекты, свойства которых были одинаковы. Когда мы что-то считаем или пересчитываем, мы как бы обезличиваем предметы, т.е. подразумеваем, что их свойства одинаковы. Но самым главным свойством числа является наличие объекта, т.е. единица и его отсутствие, т.е. ноль.
Слайд 3
Система, которой пользовались древние греки, называлась аттической. Первые
четыре числа записывались черточками. Для числа пять существовал свой
знак – «пи», как и для числа десять – первая буква слова «дека». Сотня, тысяча и десять тысяч на письме обозначались как H, X, M.
На смену этой системе в третьем веке до нашей эры пришла ионийская система. Числа от одного до девяти в ней обозначались буквами греческого алфавита: с первой по девятую. Буквами с десятую по восемнадцатую обозначались десятки – от десяти до девяноста. И последними девятью записывались сотни – от ста до девятисот.
С помощью алфавита также записывали числа восточные и южные славяне. Часть из них пользовалась славянским алфавитом, наделяя каждую букву числовым значением. Другая – только теми буквами, которые встречаются в греческом алфавите. Отличать буквы от цифр позволял специальный значок, который ставился над числом – «титло». Такая нумерация применялась в России до XVIII века.
Слайд 4
Понятие цифры
Что такое цифра?
Это алфавит чисел, набор символов,
с помощью которых мы кодируем числа. Цифры – числовой
алфавит. Цифры и числа – это разные вещи! Рассмотрим два числа 5 2 и 2 5. Цифры одни и те же – 5 и 2. А чем эти числа отличаются? Порядком цифр? – Да! Но лучше сказать - позицией цифры в числе. Положение цифры в записанном числе в непозиционных системах не влияют на величину, которая ей обозначается. Это, к примеру, системы, использующие буквы для записи цифр – славянская и римская.
Положение цифры в позиционных системах определяет значение величины, которая ей записана. При этом позиция – место, которое занимает эта цифра в числе. А количество цифр, которые используются для записи, называются основанием системы. Примерами такой системы – вавилонская шестидесятеричная и современная десятичная.
Слайд 5
Понятие числа
Первоначально понятие отвлечённого числа отсутствовало, число было
"привязано" к тем конкретным предметам, которые пересчитывали. Отвлечённое понятие
натурального числа появляется вместе с развитием письменности. Дробные же числа изобрели тогда, когда возникла необходимость производить измерения. Измерение, как известно, это сравнение с другой величиной того же рода, выбираемой в качестве эталона.
Эталон называется ещё единицей измерения. Понятно, что единица измерения не всегда укладывалась целое число раз в измеряемой величине. Отсюда и возникла практическая потребность ввести более "мелкие" числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.
Понятие числа - фундаментальное понятие как математики, так и информатики. В дальнейшем при изложении материала под числом мы будем понимать его величину, а не его символьную запись.
Слайд 6
Понятие системы счисления
Для записи информации о количестве
объектов используются числа. Числа записываются с использованием особых знаковых
систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.
Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления.
В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.
Непозиционные системы счисления возникли раньше позиционных, поэтому рассмотрим сначала различные непозиционные системы счисления.
Слайд 7
Непозиционная система
Непозиционной системой счисления называется такая система счисления,
у которой количественный эквивалент («вес») цифры не зависит от
ее местоположения в записи числа.
К непозиционным системам относятся: римская система счисления, алфавитные системы счисления и другие.
Сначала люди просто различали ОДИН предмет перед ними или нет. Если предмет был не один, то говорили «МНОГО».
Первыми понятиями математики были "меньше", "больше", "столько же".
Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.
Счет появился тогда, когда человеку потребовалось сообщать своим соплеменникам о количестве найденных им предметов.
И, так как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.
Слайд 8
Единичная система
Потребность в записи чисел появилась в очень
древние времена, как только люди начали считать. Количество предметов,
например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).
Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу.
Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.
Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.
Слайд 9
Древнеегипетская десятичная непозиционная система
В древнеегипетской системе счисления, которая
возникла во второй половине третьего тысячелетия до н.э., использовались
специальные цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.
Пример. Число 345 древние египтяне записывали так:
Единицы Десятки Сотни
В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.
Слайд 10
Римская система
Знакомая нам римская система не слишком принципиально
отличается от египетской. В ней для обозначения чисел 1,
5, 10, 50, 100, и 1000 используются заглавные латинские буквы I, V, X, C, D и M соответственно, являющиеся цифрами этой системы счисления.
Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно:
1. сумме значений идущих подряд нескольких одинаковых цифр (назовём их группой первого вида);
2. разности значений двух цифр, если слева от большей цифры стоит меньшая. В этом случае от значения большей цифры отнимается значение меньшей цифры. Вместе они образуют группу второго вида. Заметим, что левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из "младших" может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1);
3. сумме значений групп и цифр, не вошедших в группы первого или второго вида.
Пример 1. Число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2 (две группы первого вида).
Пример 2. Число 444, имеющее в своей десятичной записи 3 одинаковые цифры, в римской системе счисления будет записано в виде CDXLIV=(D-C)+(L-X)+(V-I)=400+40+4 (три группы второго вида).
Пример 3. Число 1974 в римской системе счисления будет иметь вид MCMLXXIV=M+(M-C)+L+(X+X)+(V-I)=1000+900+50+20+4 (наряду с группами обоих видов в формировании числа участвуют отдельные "цифры").
Слайд 11
Позиционные системы
Позиционной системой счисления называется такая система
счисления, у которой количественный эквивалент («вес») цифры зависит от
ее местоположения в записи числа.
Любая позиционная система счисления характеризуется своим основанием.
Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления.
За основание можно принять любое натуральное число — два, три, четыре, ..., образовав новую позиционную систему: двоичную, троичную, четверичную и ...