Слайд 2
Что это?
Суперкомпьютер – мощная многопроцессорная вычи-слительная машина с
быстродействием сотни миллионов — десятки мил-лиардов арифметических операций в
секунду, емкос-тью оперативной памяти сотни Гбайт и внешней (дисковой) памяти десятки Тбайт, разрядностью ма-шинного слова 64 или 128 бит
Слайд 3
Что же вообще такое – суперкомпьютеры?
Считается, что супер
- ЭВМ - это компьютеры с максимальной производительностью. Однако
быстрое развитие компьютерной индустрии делает это понятие весьма и весьма относительным: то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Производительность первых супер - ЭВМ начала 70-х годов была сравнима с производительностью современных ПК на базе традиционных процессоров Pentium. По сегодняшним меркам ни те, ни другие к суперкомпьютерам, конечно же, не относятся. В любом компьютере все основные параметры взаимосвязаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. Отсюда простой вывод: супер - ЭВМ — но компьютер, имеющий не только максимальную производительность, но и максимальный ли объем оперативной и дисковой памяти и совокупности со специализированным программным обеспечением, с помощью которого этим монстром можно эффективно пользоваться. Суперкомпьютерам не раз пытались давать универсальные определения — иногда они получались серьезными, иногда ироничными. Например, как-то предлагалось считать суперкомпьютером машину, вес которой превышает одну тонну.
Слайд 4
Самая мощная ЭВМ на сегодняшний день — это
система Intel ASCI RED, построенная по заказу Министерства энергетики
США. Чтобы представить себе возможности этого су1еркомпьютера,достаточно сказать, что он объединяет в себе 9632 (!) процессора Pentium Pro, имеет более 600 Гбайт оперативной памяти и общую производительность в 3200миллиардов операций в секунду. Человеку потребовалось бы 100000 лет, чтобы даже с калькулятором выполнить все те операции, которые этот компьютер делает всего за 1 секунду !Создать подобную вычислительную систему — всё равно, что построить целый завод со своими системами охлаждения, бесперебойного питания и т.д. Понятно, что любой суперкомпьютер, даже в более умеренной конфигурации, должен стоить не один миллион долларов США: ради интереса прикиньте, сколько стоят, скажем, лишь 600 Гбайт оперативной памяти? Возникает естественный вопрос: какие задачи настолько важны, что требуются компьютеры стоимостью в несколько миллионов долларов? Или еще один: какие задачи настолько сложны, что хорошего Pentium IV для их решения недостаточно? Несколько лет назад был предложен и такой вариант: суперкомпьютер — это устройство, сводящее проблему вычислений к проблеме ввода/вывода. В самом деле, задачи, которые раньше вычислялись очень долго, на супер -ЭВМ выполняются мгновенно, и почти все время теперь уходит на более медленные процедуры ввода и вывода данных, производящиеся, как правило, с прежней скоростью. Так что же такое современный суперкомпьютер?
Слайд 5
Почему супер?
Суперкомпьютеры работа-ют очень быстро не только за
счет самой современной элементной базы, но и за счет
принципиальных реше-ний, заложенных в их архи-тектуру. Главное в ней - принцип параллельной об-работки данных, воплощаю-щий в жизнь идею одновре-менного выполнения нес-кольких действий.
Слайд 6
Суперкомпьютеры Cray носят свое имя в честь изобретателя
этих машин, американского инженера
Сеймура Крея.
Слайд 7
В 30-х Сеймур Крей был грозой домашних радиоприемников
и телефонов, в 50-е начал работу над компьютером на
транзисторах, а в 70-х изобрел первые в мире суперкомпьютер. Cray 1 установили в ядерной лаборатории в американском Лос-Аламосе в 1976 году.
Слайд 8
Объем памяти той машины составлял рекордные по тем
временам 8 мегабайт, быстродействие достигало 160 мегафлопс (миллиардов операций
в секунду).
Его машины обгоняют компьютеры других производителей на протяжении вот уже нескольких десятилетий.
Слайд 9
Американская компания Cray официально анонсировала свой новый суперкомпьютер
Cray X1, в максимальной конфигурации использующий 4096 процессоров, 65,5
Тбайт оперативной памяти и достигающий производительности в 52,4 терафлопc (триллиона операций в секунду), что на сегодня является рекордным показателем.
Слайд 10
С чего все начиналось?
Первым в истории суперкомпьютером по
быстродействию и по роду решаемых задач следует, видимо, считать
Colossus («Колосс») зна-менитого математика Джона фон Неймана. Colossus I был специали-зированным компьютером и предназначался для расшифровки пере-писки верхушки вермахта. Кроме того, Colossus, в отличие от осталь-ных первенцев вроде EDVAC и ENIAC, существовавших в одном-единственном опытно-эксплутационном экземпляре, был серийной машиной.
Colossus
ENIAC
Слайд 11
Суперкомпьютер в России
Московский государственный университет им.
М. В. Ломоносова, Институт Программных Систем РАН, компания "Т-Платформы"
объявили о завершении строительства самого мощного в России, странах СНГ и Восточной Европы суперкомпьютера "СКИФ МГУ", построенного в рамках суперкомпьютерной программы "СКИФ-ГРИД». Общая стоимость комплексного проекта составила 231 млн. руб.
Слайд 13
В 1996 г. Российской академией наук, Российским фондом
фундаментальных исследований и Министерствами образования и науки был создан
Межведомственный суперкомпьютерный центр РАН (МСЦ РАН). Возглавил эту работу действительный член РАН, лауреат Государственной премии России Геннадий Иванович Савин. В 1999 году появился отечественный суперкомпьютер. Правда, его быстродействие было в 10 раз ниже, чем у зарубежных аналогов. В последующие годы этот отрыв постоянно сокращался, и сегодня МСЦ РАН входит в мировую десятку вычислительных центров-лидеров, работающих в сфере науки и образовании.
Слайд 14
Как устроено?
Для классификации па-раллельных компьюте-ров в качестве основ-ного
параметра высту-пает наличие общей или распределенной памяти. Есть и
проме-жуточные архитектуры, где память физически распределена, но логи-чески общедоступна.
ПАМЯТЬ КОМАНД
ПРОЦЕССОРЫ
П1 П2 П3 … Пn
ПАМЯТЬ ДАННЫХ
ПОТОК КОМАНД
РЕЗУЛЬТАТЫ
ПОТОК ДАННЫХ
Слайд 15
Классификация
Симметричная многопроцессорная архитектура SMP (Symmetric MultiProcessing) харктеризуется наличием
общей физической памяти, разделяемой всеми процессорами.
В массивно-параллельной архитектуре
MPP (Massive Parallel Pro-cessing) память физически разделена. В этом случае система строи-тся из отдельных модулей, по сути модули представляют собой пол-нофункциональные компьютеры. Доступ к банку оперативной памяти из данного модуля имеют только процессоры из этого же модуля.
Гибридная архитектура NUMA (Non-Uniform Memory Access) соче-тает удобства систем с общей памятью и относительную дешевизну систем с раздельной памятью. По существу архитектура NUMA - это массивно-параллельная архитектура, где в качестве отдельных вы-числительных элементов выступают SMP-узлы.
Параллельно-векторные системы PVP (Parallel Vector Processing) работают на специальных векторно-конвейерных процессорах, в которых предусмотрены команды однотипной обработки векторов независимых данных. Как правило, несколько таких процессоров ра-ботают одновременно с общей памятью (аналогично SMP) в рамках многопроцессорных конфигураций.
Слайд 16
Какие и сколько?
Источник: ftp://ftp.research.microsoft.com
Судя по статистическим данным
векторно-конвейерные системы явно сдают под натиском более простых в
изготовлении и программировании скалярных суперкомпьютеров. Однако это не совсем так, поскольку период увлечения сравнительно более дешевыми массивно-параллельными системами на основе серийно выпускаемых микропроцессоров достиг, похоже, своего пика. Ныне пользователи high-end-суперкомпьютеров, уставшие от разительного несоответствия между теоретической и реальной производительностью таких систем, все с большим интересом обращают взоры на новейшие векторно-конвейерные архитектуры.
Слайд 18
Зарубежные суперкомпьютеры
Организация TOP500 Super computer sites с 1993
года публикует статистику по500 наиболее мощным суперкомпьютерам. По данным
на июнь 2003 года 5 лучших компьютеров: 1. Система Earth Simulator (ES), созданная японскими агентствами NASDA, JAERI and JAMSTEC с производительностью 40 TFLOPS, предназначена для точного прогнозирования погодных условий
Слайд 19
2. Компьютер ASCI Q. Национальная лаборатория США,
г. Лос - Аламос. Производитель Hewlett - Packard. 3072
серверов Alpha Server ES45s, 12288процессоров EV-68 1.25 ГГц. Быстродействие 13,88 TFLOPS .Суперкомпьютерная система Q в Национальной лаборатории Лос Аламоса (LANL) -компонент Программы Углубленных Моделирований и вычислений (ASCI) -сотрудничества между департаментом Ядерной Безопасности Министерства Энергетики США и национальных лабораторий Лос Аламоса. Задачей ASCI является создание и использование возможностей для обеспечения безопасности хранения ядерного запаса.
Слайд 20
3. Кластер G5 в Блэксбурге, США, содержит 1100
компонентов Apple G5, каждый из которых содержит 970 процессоров
IBM Power PC, частотой в 2GHz. Каждый узел имеет 4GBКЭШ-памяти и 160GB SATA накопителей. 176TB общих накопителей. 4 главных узла для запуска компиляций/работы. 1 узел управления. Быстродействие 10,28 TFLOPS. Производитель – Apple G5/Mellanox.
Слайд 21
Tungsten, самый последний кластер NCSA,
будет использовать более чем 1450 двойных процессоров Dell Power
Edge, 1750 серверов, управляемых Red Hat Linux, специальную сеть высокого быстродействия Myrinet 2000, группу ввода-вывода с более чем 120 TB памяти. Этот комплекс создан для вычислений по решению проблем окружающей среды. Как ожидается, Tungsten будет обладать производительностью в 17.7TFLOPS.
Слайд 22
Тихоокеанская Северо-западная Национальная лаборатория Ричланда, США,
обладает пятым в мире по производительности суперкомпьютером MPP2. Его
производительность равняется 11 TFLOPS? Что достигнуто благодаря 980 процессорам HP/Linux Titanium 2 (Madison), каждый с тактовой частотой в 1,5 ГГц. Система управляется операционной системой Linux версии Red Hat Linux Advanced Server. Комплекс предназначен для решения сложных вычислительных процессов, связанных с экологическими и биологическими процессами.
Слайд 23
Векторно-конвейерные компьютеры
Две главные особенности таких машин: наличие функциональных
конвейерных устройств и набора векторных команд. В отличие от
обычных команд векторные оперируют целыми массивами независимых данных, то есть команда вида А =В + С может означать сложение двух массивов, а не двух чисел. Характерный представитель данного направления — семейство векторно – конвейерных компьютеров CRAY, куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте этого года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc .).
Слайд 24
Массивно-параллельные компьютеры с распределенной памятью Идея построения
компьютеров этого класса тривиальна: серийные микропроцессоры соединяются с помощью
сетевого оборудования — вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить процессоры, а если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию. К этому же классу можно отнести и простые сети компьютеров, которые сегодня все чаще рассматриваются как дешевая альтернатива крайне дорогим суперкомпьютерам.(Правда, написать эффективную параллельную программу для таких сетей довольно сложно, а в некоторых случаях просто невозможно). К массивно-параллельным можно отнести компьютеры Intel Paragon, ASCI RED, IBM SP1, Parsytec, в какой-то степени IBM SP2 и CRAYT3D/T3E.
Слайд 25
Кластерные компьютеры
Этот класс суперкомпьютеров, строго говоря, нельзя назвать
самостоятельным, скорее, он представляет собой комбинации предыдущих трех. Из
нескольких процессоров, традиционных или векторно-конвейерных, и общей для них памяти формируется вычислительный узел.
Слайд 26
. Если мощности одного узла недостаточно, создается кластер
из нескольких узлов, объединенных высокоскоростными каналами. По такому принципу
построены CRAY SV1..HP Exemplar, Sun Star Fire, NEC SX-5, последние модели IBM SP2 и другие. В настоящее время именно это направление считается наиболее перспективным. Два раза в год составляется список пятисот самых мощных вычислительных установок мира Согласно последней редакции списка top500, вышедшей в ноябре прошлого года, первое место занимает массивно-параллельный компьютер IntelA SCI Red. На второй позиции стоит компьютер ASCI Blue - Pacific от IBM, объединяющий 5808 процессоров Power PC 604e/332MHz. Оба эти суперкомпьютера созданы в рамках американской национальной программы Advanced Strategic Computing Initiative, аббревиатура которой и присутствует в названии. Производительность компьютера, стоящего на последнем, 500-м, месте в списке самых мощных, составляет 33,4 миллиарда операций в секунду.
Слайд 27
Параллельные компьютеры с общей памятью.
Вся оперативная память в
таких компьютерах разделяется несколькими одинаковыми процессорами, обращающимися к общей
дисковой памяти.
Слайд 28
Проблем с обменом данными между процессорами и синхронизацией
их работы практически не возникает. Вместе с тем главный
недостаток такой архитектуры состоит в том, что по чисто техническим причинам число процессоров, имеющих доступ к общей памяти, нельзя сделать большим. В данное направление суперкомпьютеров входят многие современные SMP-компьютеры (Symmetric)
Слайд 29
Виртуальная многопроцессорность
Основной смысл технологии Hyper - Threading заключается
в поддержке много потокового исполнения программ. Эта технология позволяет
на одном физическом процессоре одновременно исполнять два задания или два фрагмента кода одной программы. Таким образом, один процессор воспринимается операционной системой как два логических устройства, интенсивная работа которых осуществляется параллельно. Производительность таких систем, как правило, значительно превышает аналогичные параметры компьютеров, построенных на основе процессоров традиционной архитектуры. Нередки случаи, когда производительность однопроцессорных решений с реализацией Hyper – Threading повышается на 30%. А это для конфигурации с 3 ГГц процессором эквивалентно применению модели с частотой работы 4 ГГц. Остается добавить, что аудитории были продемонстрированы различные смеси задач, в которых рост производительности превышал 60%, что соответствует уже, по крайней мере, процессору 5 ГГц — уровень пока практически недостижимый даже для овер клокеров, оперирующих традиционными средствами охлаждения. Поддержка технологии Hyper Treading осуществляется многозадачными операционными системами. В качестве таких систем можно привести, например, Linux (с версии ядра 2.4) и Windows XP. А вот популярные Windows 95/98/ME для этих целей уже не подходят. Что же касается Windows 2000, то фирма Microsoft настоятельно рекомендует использовать в компьютерах, созданных на основе Pentium 4 с Hyper Treading, операционную систему Windows XP.
Слайд 31
Заключение
К сожалению, чудеса в нашей жизни совершаются редко.
Гигантская производительность параллельных компьютеров и суперЭВМ с лихвой компенсируется
стоимостью и сложностью их использования. Но даже вопросы, возникающие вокруг суперкомпьютеров, ставят в тупик. Например, простой примеры жизни: землекоп выкопает яму за один час. Как вы думаете, 60 землекопов выкопают яму за одну минуту? Так и в компьютере: начиная с некоторого момента, они будут просто мешать друг другу, не ускоряя, а замедляя работу. Но все вопросы, сопровождающие суперкомпьютер, конечно же, решаются. Да, использовать суперкомпьютер сложнее, чем PC: нужны дополнительные знания и технологии, высококвалифицированные специалисты, более сложная структура информации. Написать эффективную параллельную программу сложнее, чем последовательную, да и вообще создание параллельного программного обеспечения для параллельных компьютеров – основная проблема суперкомпьютерных вычислений. Но без суперЭВМ сегодня не обойтись, и отрадно, что в нашей стране есть понимание необходимости развития этих технологий. В ноябре 2000года в Президиуме РАН состоялось открытие межведомственного суперкомпьютерного центра. В процессе становления суперкомпьютерные центры в Дубне, Черноголовке, Институте прикладной математики им. М.В. Келдыша и т.п.Создана и развивается линия отечественных суперкомпьютеров МВС-100. За рубежом также происходит интенсивное развитие суперкомпьютеров всех типов(векторные, кластерные и т.п.), и использование их практически во всех отраслях человеческой жизни. А иначе и нельзя, так как параллельные компьютеры и вычисления – не будущее, а реальность.