Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Бакалаврская квалификационная работа

Теоретические основы метода РФЭСРентгеновская фотоэлектронная спектроскопия основана на измерении кинетической энергии фотоэлектронов, выбитых с различных энергетических уровней атомов, при облучении вещества потоком низкоэнергетического рентгеновского излучения. Принципиальная схема метода и экспериментальной установки приведена на рисунке. Ниже рассмотрим
Министерство образования Российской ФедерацииЮжный Федеральный университетФизический факультетКафедра физики твердого телаБакалаврская квалификационная работа Теоретические основы метода РФЭСРентгеновская фотоэлектронная спектроскопия основана на измерении кинетической энергии фотоэлектронов, Фотоэлектронный микрозонд ESCALAB 250.    На рисунке цифрами показаны ESCALAB 250 состоит из двух камер: камеры подготовки образца и камеры анализатора. Кристаллическое строение и свойства соединения GdMn2О5. На рисунках изображена структура монокристалла GdMn2O5: Влияние способа обработки поверхности образца GdMn2O5 на форму фотоэлектронных спектров внутренних уровней Контроль чистоты степени обработки осуществлялся по О1s линиям кислорода. На рисунке приведены 1-Бомбардировка ионами аргона 0,5 Кв, 0,5 µА2-Скрайбирование на воздухе3-Скрайбирование в вакуумеФорма фотоэлектронных
Слайды презентации

Слайд 2 Теоретические основы метода РФЭС
Рентгеновская фотоэлектронная спектроскопия основана на

Теоретические основы метода РФЭСРентгеновская фотоэлектронная спектроскопия основана на измерении кинетической энергии

измерении кинетической энергии фотоэлектронов, выбитых с различных энергетических уровней

атомов, при облучении вещества потоком низкоэнергетического рентгеновского излучения. Принципиальная схема метода и экспериментальной установки приведена на рисунке. Ниже рассмотрим экспериментальную установку для анализа поверхности твердых тел на примере фотоэлектронного микрозонда ESCALAB 250.

Слайд 3 Фотоэлектронный микрозонд ESCALAB 250.

Фотоэлектронный микрозонд ESCALAB 250.   На рисунке цифрами показаны

На рисунке цифрами показаны основные части прибора, где:

1- энергоанализатор, 2- аналитическая камера, 3-система монохроматора, 4-обычная рентгеновская трубка с двойным анодом (AlKα/MgKα), 5- детектор вторичных электронов, 6 - источник ультрафиолетового излучения, 7- электронная пушка FEG1000 c ионным насосом, 8 - CCD камера для оптического наблюдения за образцами, 9 - пятиосный манипулятор, 10-камера подготовки образца, 11- механизм передачи образца из камеры подготовки в аналитическую камеру, 12 - система для скола образца в вакууме, 13 - ионная пушка EX05, 14 – стол, внутри которого расположены турбомолекулярные, титановый сублимационный насосы и система разводки воды, 15 - электронная стойка управления прибора, 16 - форвакуумные насосы "Edwards".

Слайд 4 ESCALAB 250 состоит из двух камер: камеры подготовки

ESCALAB 250 состоит из двух камер: камеры подготовки образца и камеры

образца и камеры анализатора. Разложение электронного потока в спектр

осуществляется при помощи полусферического энергоанализатора.
Сверхвысокий вакуум в системе достигается трехступенчатой системой откачки.
Камера подготовки образца оснащена ионной пушкой для "грубой" очистки поверхности образцов до начала измерений. В качестве ионов нейтрального газа для бомбардировки поверхности используется Ar.
Монохроматический источник рентгеновского излучения состоит из двух главный компонент:
1)Источник рентгеновского излучения
2)Кристалл - монохроматор
В качестве источника для получения характеристического излучения в системе монохроматора используется электростатическая электронная пушка.


Слайд 5 Кристаллическое строение и свойства соединения GdMn2О5.
На рисунках

Кристаллическое строение и свойства соединения GdMn2О5. На рисунках изображена структура монокристалла

изображена структура монокристалла GdMn2O5: зеленые, красные и голубые сферы

соответствуют ионам Mn4+,Mn3+,Gd3+ соответственно. А черные линии –кристаллографии одной ячейки.
Восемь ионов Mn в GdMn2O5 занимают два разных места в химический ячейке. Одно место в октоэдрической координации занято Mn4+ ионами, а другое в пирамидальной - занято Mn3+ ионами.
В соединение Mn4+ O6 октаэдре расположены вдоль оси c, имеют общие ребра и формируют цепь(верхний рисунок). Октаэдры Mn4+O6 имеют общие углы в соединении Mn3+O5 тригональными бипирамидами и формируют зигзагообразную цепь в ab плоскости(нижний).


Слайд 6 Влияние способа обработки поверхности образца GdMn2O5 на форму

Влияние способа обработки поверхности образца GdMn2O5 на форму фотоэлектронных спектров внутренних

фотоэлектронных спектров внутренних уровней Gd4d.
Соединения с общей формулой

RMn2O5 (R=Gd) относят к соединениям, которые принято называть мультиферроиками. Такие материалы обладают потенциальной возможностью связывать электрическую и магнитную поляризации, что открывает широкие возможности их применения в приборах, использующих либо их магнитные и сегнетоэлектрические свойства по отдельности, либо их комбинацию.
Форма рентгеноэлектронных спектров исследовалась с помощью рентгеновского фотоэлектронного микрозонда ESCALAB 250. Возбуждение рентгеноэлектронных спектров осуществлялось с помощью монохроматизированного излучения AlKa - линии. Абсолютный разрешимый интервал энергий состовлял 0.5 эВ, который определялся по Ag3d5/2 рентгеноэлектронной линии. Диаметр рентгеновского пятна на образце составлял 500мкм, и был достаточен для исследования полученных образцов. Для снятия положительной зарядки на образце использовалась такие методы нейтрализации поверхности образца как облучение образца потоком медленных электронов с энергией 2эВ и, в особо тяжелых случаях, потоком медленных ионов аргона(до 90эВ) из ионной пушки. Перед введением в камеру подготовки образца поверхность образца обрабатывалась тремя различными методами: ионное травление, скрайбирование на воздухе и скрайбирование в высоком вакууме.

Слайд 7 Контроль чистоты степени обработки осуществлялся по О1s линиям

Контроль чистоты степени обработки осуществлялся по О1s линиям кислорода. На рисунке

кислорода. На рисунке приведены спектры O1s уровня полученные 3

разными способами подготовки образца :
1-ионное травление ,
2- скрайбирование на воздухе,
3- скрайбирование в вакууме.
На всех спектрах мы наблюдается два максимума : главный максимум, обозначенный А, и плечо В, соответствующее кислороду гидроксильной группы или воды. Видно что наименьшее плечо получено в 3 случае, этому же максимально соответствует стехиометрический состав поверхности.

Слайд 8 1-Бомбардировка ионами аргона 0,5 Кв, 0,5 µА
2-Скрайбирование на

1-Бомбардировка ионами аргона 0,5 Кв, 0,5 µА2-Скрайбирование на воздухе3-Скрайбирование в вакуумеФорма

воздухе
3-Скрайбирование в вакууме
Форма фотоэлектронных спектров внутреннего уровня Gd4d и

Mn2p

  • Имя файла: bakalavrskaya-kvalifikatsionnaya-rabota.pptx
  • Количество просмотров: 119
  • Количество скачиваний: 0