FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
WHAT IS “TEMPERATURE”?
S ~ ln[M]
Joseph Liouville
(1809 - 1882)
Along tangent: S-S(E1) = (E-E1)/ T1
i.e., F = E - T1S = const (= F1 = E1 - T1S1)
Δ(mv) ≅ m|v|, and |mv| ≅ (mkBT)1/2
Helix & coil: 1D objects Ice & water: 3D objects
N
N
n
n
ΔFhelix_n = Const + n×f ΔFICE_n = C×n2/3 + n×f
1D interface 3D interface
Mid-transition: f = 0
ΔShelix_n ~ ln(N) positions ΔSICE_n ~ ln(N)
N : very large; n ~ αN, α<<1 (e.g., α~0.001)
Const << ln(N) α2/3⋅N2/3 >> ln(N)
phases mix phases do not mix
Not
“slowly goes”,
but
climbs, falls
and climbs again…
falls
τ#→
1/TIME = (1/τ#→) × exp(-ΔF1#/kBT) + (1/τ#→) × exp(-ΔF2#/kBT)
PARALLEL REACTIONS:
RATE = 1/ TIME
TIME ≈ τ#→ × exp(+ΔF1#/kBT) + τ#→ × exp(+ΔF2#/kBT) + …
steady-state approximation
t0→… → ≈ t0→#1→1 + t1→#2→ 2 + …
start
_
“long barrier”
“downhill”
“long barrier”:
finish
# main
finish
finish
start
start
“trap”: on
“trap”: out
main #
in 3D
James Clerk
(1831 –1879)
r1
→
STATISTICAL
MECHANICS
T<0: unstable (explodes)
<εKIN> ⇒ ∞ at T<0
due to
P(εKIN) ~ exp(-εKIN/kBT)