FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро. Последовательность таких распадов называется цепочкой распадов, а последовательность возникающих при этом нуклидов называется радиоактивным рядом.
существующий в природе радионуклид калий-40 способен распадаться в соседние бета-стабильные ядра аргон-40 и кальций-40:
Постоянство константы радиоактивного распада позволяет измерять возраст различных природных и искусственных объектов по распаду входящих в их состав радиоактивных ядер и накоплению продуктов распада. Разработан ряд методов радиоизотопного датирования, позволяющих измерять возраст объектов в диапазоне от единиц до миллиардов лет; среди них наиболее известны радиоуглеродный метод, уран-свинцовый метод, уран-гелиевый метод, калий-аргоновый метод и др.
2. Бета-распад бывает двух типов: электронный и позитронный, или β-- и β+-распад .
При электронном распаде из ядра вылетают электрон и нейтрон образуется новое ядро с тем же массовым числом А,
но с атомным номером Z на единицу большим, нем у исходного ядра:
При позитронном распаде ядро испускает позитрон и нейтрино и образуется новое ядро с тем же массовым числом,
но с Z на единицу меньшим, чем у исходного ядра:
При бета-распаде в среднем 2/3 энергии ядра уносится
частицами нейтрино (нейтральными частицами очень малой массы, очень слабо взаимодействующими с веществом).
3. Двойной бета-распад
Наиболее редким из всех известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для одиннадцати нуклидов, и период полураспада для любого из них превышает 1019 лет. Двойной бета-распад, в зависимости от нуклида, может происходить:
с повышением заряда ядра на 2 (при этом испускаются два электрона и два антинейтрино, 2β−-распад)
с понижением заряда ядра на 2, при этом испускаются два нейтрино и
два позитрона (двухпозитронный распад, 2β+-распад)
испускание одного позитрона сопровождается захватом электрона из оболочки (электрон-позитронная конверсия, или εβ+-распад)
захватываются два электрона (двойной электронный захват, 2ε-захват).
Предсказан, но ещё не открыт безнейтринный двойной бета-распад.
4. Гамма-распад (изомерный переход)
Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3Hи 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьё время жизни измеряется микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.