Слайд 2
Современные двигатели неполного объёмного расширения
Поршневые ДВС неполного объёмного
расширения (степень сжатия = степени расширения) характеризуются высокими начальными
параметрами рабочих газов (давление, температура), но не обеспечивают их полного срабатывания из-за низкой степени расширения, обусловленной несовершенством кривошипно-шатунного кинематического механизма (КШМ), используемого для преобразования потенциальной энергии в механическую энергию вращения вала. Степени сжатия и расширения равны, но после воспламенения сжатой топливовоздушной смеси давление продуктов сгорания повышается ещё в несколько (4-5) раз, при этом, не обеспечивается их расширение до атмосферного давления и они, имея высокое давление и температуру, выпускаются в атмосферу и при этом наносят вред окружающей среде.
Слайд 3
К поршневым ДВС с кривошипно-шатунным механизмом относятся поршневые
двигатели Отто и Дизеля, роторно-поршневой Ванкеля, и поршневой Стирлинга.
Активная площадь S, воспринимающая давление газов, постоянна. Произведение силы F = РхS, создающей вращающий момент на не постоянный и изменяющий свою величину от 0 до максимума и за тем до 0, приведённый радиус R, имеет в итоге не большую величину, что указывает на не эффективное преобразование давления рабочего тела в механическую энергию вращения вала.
Слайд 4
Поршневые ДВС с кольцевыми цилиндрами и механизмами относительного
движения поршней.
Роторно-лопастной двигатель внешнего сгорания с более сложным, чем
кривошипно-шатунный, рычажно-кулачковым механизмом взаимного движения поршней и передачи усилия давления газов с поршней на вал, габариты которого в 2 раза больше, чем габариты цилиндропоршневой части. К недостаткам можно отнести низкую степень расширения и высокую тепловую напряженность ротора, особенно его лопастей, высокую токсичность выхлопных газов, высокий расход топлива.
Слайд 5
Роторно-лопастной двигатель внутреннего сгорания. Особенность двигателя – применение
вращающегося сложносоставного ротора размещённого внутри кольцевого цилиндра и состоящего
из четырех лопастей. На паре соосных валов установлены по две лопасти, разделяющие цилиндр на четыре рабочие камеры. Каждая камера за один оборот совершает четыре рабочих такта. В данной конструкции возможно реализовать только четырехтактный цикл. К недостаткам можно отнести низкую степень расширения и высокую тепловую напряженность ротора, особенно его лопастей.
Слайд 6
Роторно-поршневой двигатель Ванкеля.
Главное его отличие от поршневых
двигателей состоит в замене возвратно-поступательного движения поршней вращательным
одного ротора треугольной формы. На рисунке слева приведена конструкция роторно-поршневого двигателя. Его основными частями являются корпус, эксцентриковый вал (эквивалент кривошипа) и ротор. В корпусе вращается эксцентриковый вал отбора мощности, на котором установлен ротор. К недостаткам можно отнести низкую степень расширения, и, соответственно, высокий удельный расход горючего, высокую токсичность выхлопных газов, невысокий ресурс работы, а так же высокую теплонапряженность ротора.
Слайд 7
Газотурбинные двигатели полного необъёмного расширения.
Газотурбинные двигатели (ГТД) полного
необъёмного расширения, используемые для преобразования кинетической энергии газов в
механическую энергию вращения вала, имеют невысокие начальные параметры, но обеспечивают полное расширение газов до атмосферного давления. Эффективность преобразования кинетической энергии осевого потока газов в перпендикулярный осевому М кр. не более 20% от располагаемой, соответственно, удельный расход горючего высокий. Температура выхлопных газов так же достаточно высокая. Имеют самую большую удельную мощность среди ДВС.
Слайд 8
Что возможно и невозможно в тепловых двигателях.
Невозможно всё
давление рабочего тела использовать для совершения механической работы. Часть
давления должна быть отдана окружающей среде.
Невозможно достичь максимального КПД в тепловых двигателях не обеспечивая более полного использования потенциальной энергии давления рабочего тела.
Невозможно достичь максимального КПД в тепловых двигателях преобразующих давление в механическую энергию вращения не обеспечивая постепенное увеличение площади, воспринимающей давление, и одновременное удаление её от центра вращения.
Невозможно достичь максимального КПД в тепловых двигателях используя в качестве рабочего тела только газообразное.
Достижение максимального КПД возможно только при использовании в цикле расширения дополнительного рабочего тела обладающего иными физическими свойствами чем газ.
Слайд 9
Достижение максимального КПД возможно только при максимальном использовании
двух видов энергии которой обладает рабочее тело перед расширением.
Невозможно обеспечить максимального КПД термодинамическими и рабочими циклами не обеспечивающими полного использования энергии которой обладает рабочее тело перед расширением.
Возможно для достижения максимально КПД использование не только потенциальной энергии давления газообразного рабочего тела но, и его внутренней энергии, используя её для генерации потенциальной энергии давления рабочего тела с иными свойствами чем у газообразного, а именно, парообразующей жидкости.
Возможно генерация дополнительного рабочего тела непосредственно в процессе расширения газообразного.
Слайд 10
Турбина объёмного расширения (ТОР).
В современных осевых газовых и
паровых турбинах необъёмного расширения один поток рабочего тела движется
в направлении оси вала турбины, при этом, крутящий момент создаёт окружная сила, возникающая на лопатках ротора турбины и действующая перпендикулярно осевому потоку. Известна однопоточная радиальная турбина необъёмного расширения, предложенная в 1912 г. в Швеции братьями Юнгстрем. Рабочее тело в ней движется при расширении от центра к периферии в плоскости, перпендикулярной оси турбины. В ней нет неподвижных сопловых лопаток, два ротора вращаются в противоположных направлениях и мощность, развиваемая турбиной, передаётся двум валам. Как и осевые турбины она использует кинетическую энергию одного потока и является чисто реактивной