Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Солнечная радиация на Земле

Содержание

1. Понятие «солнечная радиация». Интенсивность солнечной радиации, солнечная постоянная.Земля вращается в потоке солнечных лучей. И хотя к ней приходит лишь одна двухмиллиардная часть всего солнечного излучения, это составляет 1,36 х 1024кал в год. Для сравнения: лучистая
4. СОЛНЕЧНАЯ РАДИАЦИЯ НА ЗЕМЛЕПонятие «солнечная радиация». Интенсивность солнечной радиации, солнечная постоянная.Солнечная 1. Понятие «солнечная радиация». Интенсивность солнечной радиации, солнечная постоянная.Земля вращается в потоке Поток лучистой энергии Солнца, подходящий к земной атмосфере, отличается большим постоянством. Его 2. Солнечная радиация у верхней границы атмосферы.В экваториальном поясе (вне атмосферы) количество В южное полушарие в летний для него период поступает больше тепла, чем 3. Солнечная радиация в атмосфере (прямая, рассеянная, суммарная).Солнечная радиация, попадая в атмосферу, Фактор мутности – отношение прозрачности реальной атмосферы к прозрачности идеальной, определяется содержанием Соотношение между прямой и рассеянной радиацией меняется в значительных пределах в зависимости 4. Солнечная радиация у земной поверхности (альбедо, встречное, земное и эффективное излучение).Альбедо. Чистая атмосфера отражает около 0,10 солнечной радиации. Большое альбедо поверхности полярных льдов, Атмосфера, поглощая часть проходящей через нее солнечной радиации и больше половины земной, В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности и излучение Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и рассеянную радиацию) и задерживать Что такое парниковый эффект?Это предполагаемое потепление климата, повышение среднегодовой температуры на Земле, Отрицательные последствия парникового эффекта для органического мираВ засушливых районах дожди станут еще Сократятся жилые земли, вседствии затопления участков суши, потому что   а) Многие растения погибнут от недостатка влаги и животным придется переселится в другие Урожай основных культур может быть снижен вследствие болезней, вызванных вредными насекомыми, поскольку Положительные последствия парникового эффектаувеличение продолжительности вегетационного сезона в средних и высоких широтах. Решение проблемы парникового эффектаВосстановления почвенного и растительного покрова с максимальными запасами органического 5. Радиационный режим атмосферы и поверхности Земли.Разность между поглощенной радиацией и эффективным На карте годовых сумм радиационного баланса видно, что распределение их на Океане В январе радиационный баланс отрицателен в значительной части северного полушария. Нулевая изолиния 6. Тепловой баланс.Как расходуются излишки тепла (положительный радиационный баланс) и восполняется его Если величину солнечной радиации, поступающей за год на Землю, принять за 100%, So=100%Q-Rк=47%23%S=24%D=32%26%Q=50%P=5%LE=24%RкЕэф=18%18  24   5  23Уходящая радиация-70%А=30%2163Приходящая коротковолновая  радиация
Слайды презентации

Слайд 2
1. Понятие «солнечная радиация». Интенсивность солнечной радиации, солнечная

1. Понятие «солнечная радиация». Интенсивность солнечной радиации, солнечная постоянная.Земля вращается в

постоянная.
Земля вращается в потоке солнечных лучей. И хотя к

ней приходит лишь одна двухмиллиардная часть всего солнечного излучения, это составляет 1,36 х 1024кал в год. Для сравнения: лучистая энергия звезд составляет одну стомиллионную долю поступающей солнечной энергии, космические излучения – две миллиардных доли, внутреннее тепло Земли у ее поверхности равно одной тысячной доли солнечного тепла.
Таким образом, электромагнитное излучение Солнца – солнечная радиация – основной источник энергии процессов, совершающихся в географической оболочке. Эта радиация состоит из видимой (46%) и невидимой (54%).
За единицу измерения интенсивности солнечной радиации принимается количество калорий тепла, поглощенное 1 см2 абсолютно черной поверхности, перпендикулярной направлению солнечных лучей, за 1 мин (кал/см2 х мин).



Слайд 5 Поток лучистой энергии Солнца, подходящий к земной атмосфере,

Поток лучистой энергии Солнца, подходящий к земной атмосфере, отличается большим постоянством.

отличается большим постоянством. Его интенсивность называют солнечной постоянной (I0)

и принимают равной 1,98 кал/см2 х мин.
В зависимости от изменений в течение года расстояния от Земли до Солнца, солнечная постоянная колеблется: к началу января она увеличивается, к началу июля – уменьшается. Годовые колебания солнечной постоянной составляют около 3,5%. На каждый 1см2 земной поверхности приходится около 260 ккал в год. Количество солнечной радиации, поступающей на участок земной поверхности зависит, от угла падения солнечных лучей. Чем меньше угол падения лучей, тем меньше интенсивность солнечной радиации.
Количество солнечной радиации, получаемое поверхностью, находится в прямой зависимости от продолжительности освещения ее солнечными лучами.


Слайд 8 2. Солнечная радиация у верхней границы атмосферы.
В экваториальном

2. Солнечная радиация у верхней границы атмосферы.В экваториальном поясе (вне атмосферы)

поясе (вне атмосферы) количество солнечного тепла в течение года

не испытывает больших колебаний, а в высоких широтах эти колебания велики. В зимний период в приходе солнечного тепла между высокими и низкими широтами особенно значительны. В летний период, в условиях непрерывного освещения, полярные районы получают максимальное на Земле количество солнечного тепла за сутки. Это количество в день летнего солнцестояния в северном полушарии на 36% превосходит суточные суммы тепла на экваторе. Но так как продолжительность дня на экваторе не 24 часа, как в это время на полюсе, а 12 часов, количество солнечной радиации на единицу времени на экваторе остается наибольшим. Летний максимум суточной суммы солнечного тепла, наблюдаемый около 40 – 500 широты, связан с тем, что здесь при значительной высоте Солнца сравнительно большая продолжительность дня (больше, чем на экваторе). Различия в количестве тепла, получаемого экваториальными и полярными районами, летом меньше, чем зимой.


Слайд 9
В южное полушарие в летний для него период

В южное полушарие в летний для него период поступает больше тепла,

поступает больше тепла, чем летом в северное полушарие. Зимой

картина обратная: южное полушарие получает меньше солнечного тепла, чем северное. Причиной служит изменение расстояния Земли до Солнца. Если бы поверхность обоих полушарий была совершенно однородной, годовые амплитуды колебания температуры в южном полушарии были бы больше, чем в северном.


Слайд 12 3. Солнечная радиация в атмосфере (прямая, рассеянная, суммарная).
Солнечная

3. Солнечная радиация в атмосфере (прямая, рассеянная, суммарная).Солнечная радиация, попадая в

радиация, попадая в атмосферу, претерпевает количественные и качественные изменения.
Даже

идеальная (сухая и чистая) атмосфера поглощает и рассеивает солнечные лучи, уменьшая интенсивность солнечной радиации. Ослабляющее влияние на солнечную радиацию реальной атмосферы, содержащей водяные пары и твердые примеси, значительно больше, чем идеальной.
Атмосфера поглощает всего 15 – 20% пришедшей к Земле солнечной радиации, в основном инфракрасной. Поглотителями служат водяной пар, аэрозоли, озон.
Около 25% солнечной радиации рассеивается атмосферой. Молекулы газов рассеивают коротковолновые лучи (от этого цвет неба голубой). Примеси (пылинки, кристаллики и капельки) рассеивают более длинноволновые лучи (белесоватый оттенок). Благодаря рассеянию и отражению солнечных лучей атмосферой существует дневное освещение в пасмурные дни, видны предметы в тени, возникает явление сумерек.


Слайд 13 Фактор мутности – отношение прозрачности реальной атмосферы к

Фактор мутности – отношение прозрачности реальной атмосферы к прозрачности идеальной, определяется

прозрачности идеальной, определяется содержанием в атмосфере водяного пара и

пыли и всегда больше единицы.
С увеличением географической широты фактор мутности уменьшается: на широтах от 00 до 200 с.ш. он в среднем равен 4,6, на широтах от 400 до 500 с.ш. – 3,5, на широтах от 500 до 600 с.ш. – 2,8 и на широтах от 600 до 800 с.ш. – 2,0. В умеренных широтах фактор мутности зимой меньше, чем летом, утром меньше, чем днем. С высотой он убывает. Чем больше фактор мутности, тем больше ослабление солнечной радиации в атмосфере.
Часть солнечной радиации, проникнувшая через атмосферу к земной поверхности не рассеявшись, представляет собой прямую радиацию. Часть радиации, рассеивающаяся атмосферой, превращается в рассеянную радиацию. Вся солнечная радиация, поступающая на земную поверхность: прямая + рассеянная называется суммарной радиацией.


Слайд 17 Соотношение между прямой и рассеянной радиацией меняется в

Соотношение между прямой и рассеянной радиацией меняется в значительных пределах в

значительных пределах в зависимости от облачности, запыленности атмосферы, а

также от высоты Солнца. При облачном небе рассеянная радиация может быть больше прямой. При малой высоте Солнца суммарная радиация почти полностью состоит из рассеянной. При высоте Солнца 500 и при ясном небе рассеянная радиация не превышает 10 – 20%.
Распределение на Земле суммарной радиации позволяют проследить карты средних годовых и месячных ее величин. Наибольшее годовое количество суммарной радиации получает поверхность тропических внутриконтинентальных пустынь (Восточная Сахара и центральная часть Аравии). К экватору суммарная радиация снижается до 120 – 160 ккал/см2 в год вследствие высокой влажности воздуха и большой облачности. В умеренных широтах поверхность получает 80 – 100 ккал/см2 в год, в Арктике – 60 –70 , а в Антарктиде, при частой повторяемости ясных дней и большой прозрачности атмосферы, - 100 – 120 ккал/см2 в год. Распределение суммарной радиации по земной поверхности имеет зональный характер.


Слайд 20 4. Солнечная радиация у земной поверхности (альбедо, встречное,

4. Солнечная радиация у земной поверхности (альбедо, встречное, земное и эффективное

земное и эффективное излучение).
Альбедо. Суммарная солнечная радиация, попадая на

поверхность, частично отражается обратно в атмосферу. Отношение количества радиации, отраженной от поверхности к количеству падающей на эту поверхность, называется альбедо. Альбедо характеризует отражательную способность поверхности и выражается дробью или в процентах. Альбедо земной поверхности зависит от ее свойств и состояния: цвета, влажности и др. Наибольшей отражательной способностью обладает свежевыпавший снег – до 0,90. Альбедо поверхности песчаной пустыни – от 0,09 до 0,34 (в зависимости от цвета и влажности), поверхности глинистой пустыни – 0,30, луга со свежей травой – 0,22, с сухой травой – 0,931, леса лиственного – 0,16 –0,27, леса хвойного – 0,6 – 0,19. Отражательная способность спокойной водной глади при отвесном падении солнечных лучей – 0,02, при низком стоянии Солнца над горизонтом – 0,35.


Слайд 24 Чистая атмосфера отражает около 0,10 солнечной радиации. Большое

Чистая атмосфера отражает около 0,10 солнечной радиации. Большое альбедо поверхности полярных

альбедо поверхности полярных льдов, покрытых снегом, - одна из

причин низких температур в полярных районах. Альбедо Земли как планеты очень сложно, так как поверхность ее очень разнообразна. Большое значение имеет облачность. Альбедо облаков – от 0,50 до 0,80. Величину альбедо Земли как планеты принимают равной 0,35.
Излучение. Всякое тело, обладающее температурой выше абсолютного нуля (- 2730С), испускает лучистую энергию. Полная лучеиспускательная способность абсолютно черного тела прямо пропорционально четвертой степени его абсолютной температуры (Т).
Чем выше температура излучающего тела, тем короче длина волн испускаемых им лучей. Раскаленное Солнце посылает в пространство коротковолновую радиацию. Земная поверхность, поглощая коротковолновую солнечную радиацию, нагревается и также становится источником излучения (источником земной радиации). Но так как температура земной поверхности не превышает нескольких десятков градусов, ее излучение длинноволновое, невидимое.


Слайд 27 Атмосфера, поглощая часть проходящей через нее солнечной радиации

Атмосфера, поглощая часть проходящей через нее солнечной радиации и больше половины

и больше половины земной, сама излучает энергию и в

мировое пространство и к земной поверхности. Атмосферное излучение, направленное к земной поверхности, навстречу земному, называется встречным излучением. Встречным оно называется потому, что направлено навстречу собственному излучению земной поверхности. Это излучение, как и земное, длинноволновое, невидимое. Земная поверхность поглощает это встречное излучение почти целиком (на 90 – 99%). Встречное излучение возрастает с увеличением облачности, поскольку облака сами являются источником излучения. С высотой встречное излучение уменьшается вследствие уменьшения содержания водяного пара. Наибольшее встречное излучение у экватора, где атмосфера наиболее нагрета и богата водяным паром.


Слайд 29
В атмосфере встречаются два потока длинноволновой радиации –

В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности и

излучение поверхности и излучение атмосферы. Разность между ними, определяющая

фактическую потерю тепла земной поверхностью, называется эффективным излучением. Эффективное излучение тем больше, чем выше температура излучающей поверхности. Влажность воздуха уменьшает эффективное излучение, сильно снижают его облака.
Наибольшее значение годовых сумм эффективного излучения наблюдается в тропических пустынях (80 ккал/см2 в год) благодаря высокой температуре поверхности, сухости воздуха и ясности неба. На экваторе при большой влажности воздуха эффективное излучение составляет всего около 30 ккал/см2 в год, причем величина его для суши и для океана мало различается. В умеренных широтах земная поверхность теряет почти половину того количества тепла, которое она получает от поглощения суммарной радиации. В целом для Земли эффективное излучение 46 ккал/см2 в год.

Слайд 30 Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и

Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и рассеянную радиацию) и

рассеянную радиацию) и задерживать длинноволновое тепловое излучение Земли называют

парниковым эффектом. Средняя температура земной поверхности около +150С, а при отсутствии атмосферы она была бы на 21 – 360 ниже.


Слайд 31 Что такое парниковый эффект?
Это предполагаемое потепление климата, повышение

Что такое парниковый эффект?Это предполагаемое потепление климата, повышение среднегодовой температуры на

среднегодовой температуры на Земле, в результате накопления в атмосфере

"парниковых газов", пропускающих кратковременные солнечные лучи и препятствующие тепловому, длинноволновому излучению с поверхности Земли.

Слайд 34 Отрицательные последствия парникового эффекта для органического мира
В засушливых

Отрицательные последствия парникового эффекта для органического мираВ засушливых районах дожди станут

районах дожди станут еще более редкими и они превратятся

в пустыни в результате чего людям и животным придется их покинуть.

Если температура на Земле повысится, многие животные не смогут адаптироваться к климатическим изменениям


Слайд 35 Сократятся жилые земли, вседствии затопления участков суши, потому

Сократятся жилые земли, вседствии затопления участков суши, потому что  а)

что
а) вода, нагреваясь становится менее плотной

и расширяется, расширение морской воды приведет к общему повышению уровня моря;
б) повышение температуры может растопить часть многолетних льдов, покрывающих некоторые районы суши, например, Антарктиду или высокие горные цепи.

Слайд 36
Многие растения погибнут от недостатка влаги и животным

Многие растения погибнут от недостатка влаги и животным придется переселится в

придется переселится в другие места в поисках пищи и

воды.
Если повышение температуры приведет к гибели многих растений, то вслед за ними вымрут и многие виды животных.

Слайд 37 Урожай основных культур может быть снижен вследствие болезней,

Урожай основных культур может быть снижен вследствие болезней, вызванных вредными насекомыми,

вызванных вредными насекомыми, поскольку повышение температуры ускорит их размножение.


Почвы в некоторых областях окажутся малопригодными для выращивания основных культур. Глобальное потепление ускорило бы, вероятно, разложение органического вещества в почвах, что привело бы к дополнительному поступлению в атмосферу диоксида углерода и метана и ускорило парниковый эффект.


Слайд 38 Положительные последствия парникового эффекта
увеличение продолжительности вегетационного сезона в

Положительные последствия парникового эффектаувеличение продолжительности вегетационного сезона в средних и высоких

средних и высоких широтах.

Увеличение концетрации диоксида углерода может

ускорить фотосинтез.

Слайд 39 Решение проблемы парникового эффекта
Восстановления почвенного и растительного покрова

Решение проблемы парникового эффектаВосстановления почвенного и растительного покрова с максимальными запасами

с максимальными запасами органического вещества.
Замена ископаемого топлива другими источниками

энергии - экологически безвредными, не требующими расхода кислорода.
Использование водной и ветровой энергии.
Борьба с сокращением растительного покрова Земли (т.к. многие растения очищают воздух от парниковых газов).

Слайд 40 5. Радиационный режим атмосферы и поверхности Земли.
Разность между

5. Радиационный режим атмосферы и поверхности Земли.Разность между поглощенной радиацией и

поглощенной радиацией и эффективным излучением называют радиационным балансом или

остаточной радиацией. В приходную часть баланса входят прямая радиация, рассеянная, т.е. суммарная. В расходную часть – альбедо поверхности и ее эффективное излучение.
Радиационный баланс земной поверхности за год положителен для всей Земли, за исключением ледяных плато Гренландии и Антарктиды. Это значит, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время.
Ночью на всех широтах радиационный баланс поверхности отрицателен, днем до полудня – положителен (кроме высоких широт зимой), после полудня снова отрицателен.


Слайд 43 На карте годовых сумм радиационного баланса видно, что

На карте годовых сумм радиационного баланса видно, что распределение их на

распределение их на Океане в целом зонально. В тропических

широтах годовые суммы радиационного баланса на Океане – 140 ккал/см2 (Аравийское море), а у границ плавучих льдов не превышают 30 ккал/см2. Около 600 с. и ю. широт годовой радиационный баланс равен 20 – 30 ккал/см2. Отсюда к более высоким широтам он уменьшается и на материке Антарктида он отрицателен –5 - -10 ккал/см2. К низким широтам он возрастает, достигая 100 – 120 ккал/см2 в тропиках и на экваторе. Незначительные отклонения от зонального распределения связаны с разной облачностью. Над водной поверхностью радиационный баланс больше, чем на суше в тех же широтах, т.к. океаны поглощают радиацию больше. Существенно отклоняется от зонального распределения величина радиационного баланса в пустынях, где баланс понижен вследствие большого эффективного излучения в сухом и малооблачном воздухе (в Сахаре – 60 ккал/см2, а рядом в океанах – 120 – 140 ккал/см2). Баланс понижен также, но в меньшей степени, в районах с муссонным климатом, где в теплое время года облачность увеличена и, следовательно, поглощенная радиация (прямая и рассеянная) уменьшена по сравнению с другими районами на той же широте.


Слайд 45 В январе радиационный баланс отрицателен в значительной части

В январе радиационный баланс отрицателен в значительной части северного полушария. Нулевая

северного полушария. Нулевая изолиния проходит в районе 400 с.ш.

К северу от этой широты баланс становится отрицательным, достигая в Арктике – минус 4 ккал/см2 и ниже. Южнее он возрастает до 10 – 14 ккал/см2 на южном тропике, а южнее убывает до 4 – 5 ккал/см2 в прибрежных районах Антарктиды.
В июле радиационный баланс во всем северном полушарии положителен. На 60 – 650 с.ш. он более 8 ккал/см2. К югу он медленно увеличивается, достигая максимальных значений по обе стороны от северного тропика – 12 – 14 ккал/см2 и выше, а на севере Аравийского моря – 16 ккал/см2. Баланс остается положительным до 400ю.ш. Южнее он переходит к отрицательным значениям и у берегов Антарктиды снижается до минус 1 – минус 2 ккал/см2.

Слайд 48 6. Тепловой баланс.

Как расходуются излишки тепла (положительный радиационный

6. Тепловой баланс.Как расходуются излишки тепла (положительный радиационный баланс) и восполняется

баланс) и восполняется его недостаток (отрицательный радиационный баланс), как

устанавливается тепловое равновесие для поверхности, атмосферы, объясняет тепловой баланс.
Так как все члены уравнения могут изменяться, тепловой баланс очень подвижен. Тепловой баланс атмосферы включает ее радиационный баланс (всегда отрицательный), тепло, поступающее от поверхности и тепло, выделяющееся при конденсации влаги (величины всегда положительные).

Слайд 52 Если величину солнечной радиации, поступающей за год на

Если величину солнечной радиации, поступающей за год на Землю, принять за

Землю, принять за 100%, то 31% - направляется обратно

в межпланетное пространство (7% рассеивается и 24% отражается облаками). Атмосфера поглощает 17% пришедшей радиации (3% поглощается озоном, 13% - водяным паром и 1% - облаками). Оставшиеся 52% (прямая + рассеянная радиация) достигают подстилающей поверхности, которая 4% отражает за пределы атмосферы, а 48% поглощает. Из 48%, поглощенных поверхностью, 18% идет на эффективное излучение. Таким образом, радиационный баланс поверхности (остаточная радиация) составит 30% (52% - 4% -18%). На испарение с поверхности расходуется 22%, на турбулентный обмен теплом с атмосферой – 8%. Тепловой баланс поверхности: 30% - 22% - 8% = -30%.
Излучение атмосферы в межпланетное пространство – 65%. Ее радиационный баланс: -65% + 17% + 18% = -30%. Тепловой баланс атмосферы: -30% + 22% + 8% =0. Альбедо Земли как планеты 35%.



Слайд 54

So=100%



Q-Rк=47%


23%




S=24%
D=32%
26%
Q=50%
P=5%
LE=24%

Еэф=18%
18 24 5 23
Уходящая

So=100%Q-Rк=47%23%S=24%D=32%26%Q=50%P=5%LE=24%RкЕэф=18%18 24  5 23Уходящая радиация-70%А=30%2163Приходящая коротковолновая радиация 100%Коротковолновая радиация: отраженная

радиация-70%
А=30%
21
6
3
Приходящая коротковолновая радиация 100%
Коротковолновая радиация: отраженная и рассеянная

в космос 30%

Длинноволновая уходящая земная атмосферная радиация 70%

Схема радиационного и теплового балансов земной поверхности


  • Имя файла: solnechnaya-radiatsiya-na-zemle.pptx
  • Количество просмотров: 140
  • Количество скачиваний: 1