Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Комбинаторные задачи 5 класс

Содержание

Ослик ИА решил пригласить к себе на День рожденья Винни-Пуха, Сову, Пятачка, Кота Матроскина, Шарика, Дядю Фёдора и почтальона Печкина. Сколько существует вариантов последовательного написания пригласительных билетов, если учесть, что Шарик, Кот Матроскин и Дядя Фёдор
Конкурс презентаций к уроку: «Мозаика презентаций»Комбинаторные задачи   для 5-6 классовАвтор: Ослик ИА решил пригласить к себе на День рожденья Винни-Пуха, Сову, Пятачка, 2-й пригл.3-й пригл.ВДФПППДФППВППППВДФДФППДФПППВПДФППДФППДФППППДФППВВВППППВП Ослик ИА решил пригласить к себе на День рожденья Первыми пришли Винни-Пух, Пятачок и Сова. Подойдя к двери и увидев кодовый Первыми пришли Винни-Пух, Пятачок и Сова. Подойдя к двери и увидев кодовый А если бы трехзначный шифр состоял из цифр 1, 2, 3, но Подождав некоторое время остальных гостей Ослик предложил Сове позвонить друзьям, но из Друзья ответили, что Тр-тр Митя сломался и пока они приехать не могут. Ослик, ожидая гостей, приготовил на обед борщ, вермишелевый суп, три вторых блюда Перед тем, как подарить подарки (Пятачок принес лопнувший шарик, Винни-Пух пустой горшочек, Перед отъездом почтальон Печкин должен успеть разнести письма в 7 различных Подоспели новые гости. Заходят в дом и начинают обмениваться рукопожатиями. Сколько всего Сколько способов размещения друзей за столом возможны сейчас, когда в доме присутствуют Вкусно покушав, весёлая компания стала играть в игру с разноцветными треугольниками. Имеется После танцев гости решили оставить на память Ослику поздравительное послание, состоящее из Мудрая Сова предложила написать ещё одно предложение: «Тебя мы очень любим!» Сколько Уже стемнело, а гостям не хочется расходиться по домам. Ослик предложил поиграть Всех гостей Ослик ИА решил развести по домам сам. Сколько возможных вариантов Список литературы и Интернет- ресурсов: Математика. 5 класс: учеб. для общеобразоват. учреждений/
Слайды презентации

Слайд 2 Ослик ИА решил пригласить к себе на День

Ослик ИА решил пригласить к себе на День рожденья Винни-Пуха, Сову,

рожденья Винни-Пуха, Сову, Пятачка, Кота Матроскина, Шарика, Дядю Фёдора

и почтальона Печкина. Сколько существует вариантов последовательного написания пригласительных билетов, если учесть, что Шарик, Кот Матроскин и Дядя Фёдор живут в одном доме и получат один пригласительный билет, а Сова получила приглашение в устной форме?


Слайд 3 2-й пригл.
3-й пригл.
В
ДФ
П
ПП
ДФ
ПП
В














ПП
ПП
В
ДФ
ДФ
ПП
ДФ
П
ПП
В
П
ДФ
ПП
ДФ
ПП
ДФ
П
ПП
П
ДФ
ПП
В
В
В
П
П
ПП
В
П
Ослик ИА решил пригласить к

2-й пригл.3-й пригл.ВДФПППДФППВППППВДФДФППДФПППВПДФППДФППДФППППДФППВВВППППВП Ослик ИА решил пригласить к себе на День

себе на День рожденья Винни-Пуха, Сову, Пятачка, Кота Матроскина,

Шарика, Дядю Фёдора и почтальона Печкина. Сколько существует вариантов последовательного написания пригласительных билетов, если учесть, что Шарик, Кот Матроскин и Дядя Фёдор живут в одном доме и получат один пригласительный билет, а Сова получила приглашение в устной форме?


Винни-Пух Пятачок Дядя Фёдор Почтальон Печкин

1-й пригл.

В

ДФ

П

ПП

В

П

ДФ

ПП

4-й пригл.

ДФ

ПП

ДФ

П

ПП

В

П

ДФ

ПП

ДФ

ПП

ДФ

П

ПП

П

ДФ

ПП

В

В

В

П

П

ПП

В

Варианты: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

*

Введём обозначения:

П


Слайд 4 Первыми пришли Винни-Пух, Пятачок и Сова. Подойдя к

Первыми пришли Винни-Пух, Пятачок и Сова. Подойдя к двери и увидев

двери и увидев кодовый замок, они поняли, что забыли

код. Подумав, Пятачок вспомнил, что код-трёхзначное число, а мудрая Сова знала, что оно состоит из трёх цифр 1, 2, 3. Сколько всевозможных вариантов им придётся перебрать, чтобы попасть в гости?


Слайд 5 Первыми пришли Винни-Пух, Пятачок и Сова. Подойдя к

Первыми пришли Винни-Пух, Пятачок и Сова. Подойдя к двери и увидев

двери и увидев кодовый замок, они поняли, что забыли

код. Подумав, Пятачок вспомнил, что код-трёхзначное число, а мудрая Сова знала, что оно состоит из трёх цифр 1, 2, 3. Сколько всевозможных вариантов им придётся перебрать, чтобы попасть в гости?






Решение:
Первая цифра может быть выбрана из любых трех цифр (1,2,3)
Для каждой второй цифры существует выбор тоже из трёх цифр
(1, 2, 3).
Для каждой третьей цифры опять выбор из трёх цифр, так как
в задании не оговорено, что цифры повторяться не должны.
Значит, 3×3×3=27.
Ответ: 27


Слайд 6 А если бы трехзначный шифр состоял из цифр

А если бы трехзначный шифр состоял из цифр 1, 2, 3,

1, 2, 3, но без их повторений? Сколькими способами

замок мог быть закодирован в этом случае?

Решение:

1

2

3

2

3

3

2

1

3

3

1

1

2

2

1

По правилу произведения получаем:
3×2×2=12
Ответ: 12 способами.


Слайд 7 Подождав некоторое время остальных гостей Ослик предложил Сове

Подождав некоторое время остальных гостей Ослик предложил Сове позвонить друзьям, но

позвонить друзьям, но из семизначного телефонного номера он помнил

только первые три цифры 295. Сколько всего вариантов телефонных номеров можно составить, чтобы помочь Ослику дозвониться до своих друзей?

Решение:
295 * * * *
На четвёртом месте может стоять любая из 10 цифр: 0,1,2…9.
На пятом, шестом, седьмом местах также могут стоять любые из 10-ти цифр.
Значит, различных вариантов будет 10×10×10×10=10000
Ответ:10000 вариантов.


Слайд 8 Друзья ответили, что Тр-тр Митя сломался и пока

Друзья ответили, что Тр-тр Митя сломался и пока они приехать не

они приехать не могут. Приносят свои извинения и предлагают

не ждать их, а садиться за стол. Сколькими способами Ослик ИА может разместить за столом трёх гостей?

Решение:
По правилу произведения
получаем:
3×2×1=6(способов).
Ответ: 6 способами Ослик ИА может разместить за столом 3 гостей.
.


Слайд 9 Ослик, ожидая гостей, приготовил на обед борщ, вермишелевый

Ослик, ожидая гостей, приготовил на обед борщ, вермишелевый суп, три вторых

суп, три вторых блюда и пять напитков. Сколькими способами

гости могут выбрать себе обед, состоящий из первого, второго и третьего блюд?

Решение:
Первое блюдо может быть выбрано двумя способами.
Второе блюдо - тремя способами.
Третье блюдо - пятью способами.
По правилу произведения получаем:
2×3×5=30(способов)
Ответ: 30 способов.


Слайд 10 Перед тем, как подарить подарки (Пятачок принес лопнувший

Перед тем, как подарить подарки (Пятачок принес лопнувший шарик, Винни-Пух пустой

шарик, Винни-Пух пустой горшочек, Сова-хвост), гости решили поменять их

между собой. Сколько существует возможных вариантов обмена подарками, если каждый приглашенный не должен остаться со своим подарком?

Решение:
Введём обозначение: Винни – Пух – В, Сова – С, Пятачок – П.
Обмен может произойти следующим образом:

В-С-П-В
В-П-С-В
С-П-В-С
С-В-П-С
П-В-С-П
П-С-В-П

Так как последние два
варианта являются повторением
третьего и четвёртого, то
6-2=4(варианта).
Ответ: 4 варианта.


Слайд 11 Перед отъездом почтальон Печкин должен успеть разнести

Перед отъездом почтальон Печкин должен успеть разнести письма в 7

письма в 7 различных учреждений. Сколько маршрутов для него

существует?

Решение:
По правилу произведения получаем:
7×6×5×4×3×2×1=5040 (способов)
Ответ: 5040 способов.


Слайд 12 Подоспели новые гости. Заходят в дом и начинают

Подоспели новые гости. Заходят в дом и начинают обмениваться рукопожатиями. Сколько

обмениваться рукопожатиями. Сколько всего произойдёт рукопожатий?
Решение:
Каждый из присутствующих в

доме
здоровается с четырьмя гостями.
Поэтому:
4×4=16(рукопожатий)
Ответ: 16 рукопожатий.


Слайд 13 Сколько способов размещения друзей за столом возможны сейчас,

Сколько способов размещения друзей за столом возможны сейчас, когда в доме

когда в доме присутствуют 7 гостей и Ослик?
Решение:
По

правилу произведения получаем:
8×7×6×5×4×3×2×1=
=40320(способов)
Ответ: 40320 способов размещения 8 друзей за столом существует.

Слайд 14 Вкусно покушав, весёлая компания стала играть в игру

Вкусно покушав, весёлая компания стала играть в игру с разноцветными треугольниками.

с разноцветными треугольниками. Имеется 4 треугольника - синий, жёлтый,

зелёный, красный. Сколько можно составить ёлочек из предложенных треугольников, не повторяя цвета, используя для составления каждой ёлочки все 4 треугольника?

Решение:
Воспользуемся правилом произведения:
4×3×2×1=24 (способа)
Ответ: 24 различных ёлочки можно составить.


Слайд 15 После танцев гости решили оставить на память Ослику

После танцев гости решили оставить на память Ослику поздравительное послание, состоящее

поздравительное послание, состоящее из одного предложения, в котором присутствуют

слова: «Поздравляем мы тебя!» Сколько различных способов написания этого предложения существует? Сможет ли каждый из гостей составить своё предложение?

Решение:
По правилу произведения получаем:
3×2×1=6 (способов)
Ответ: существует 6 различных способов написания данного предложения. Каждый из гостей не сможет записать своё, отличное от других предложение.


Слайд 16 Мудрая Сова предложила написать ещё одно предложение: «Тебя

Мудрая Сова предложила написать ещё одно предложение: «Тебя мы очень любим!»

мы очень любим!» Сколько в этом случае вариантов данного

предложения существует?

Решение:
4×3×2×1=24(варианта)
Ответ: предложение, состоящее из 4 слов,
можно составить 24 способами.


Слайд 17 Уже стемнело, а гостям не хочется расходиться по

Уже стемнело, а гостям не хочется расходиться по домам. Ослик предложил

домам. Ослик предложил поиграть в шашки. Сколько партий будет

сыграно если предположить, что каждый из гостей будет играть друг с другом?

Решение:
Каждый игрок должен сыграть по 7 партий. Рассмотрим случаи, когда игроки не повторяются. Первый должен сыграть 7 партий (со 2, 3, 4, 5, 6, 7, 8), второй- 6 партий (с 3, 4, 5,6, 7, 8), третий – 5 партий (с 4, 5, 6, 7, 8), четвёртый – 4 партии (с 5, 6, 7,8), пятый – 3 партии (с 6, 7, 8), шестой – 2 партии (с 7, 8), седьмой – 1 партия (с 8). Отсюда, количество партий:
7+6+5+4+3+2+1=28.
Ответ: 28 партий.


Слайд 18 Всех гостей Ослик ИА решил развести по домам

Всех гостей Ослик ИА решил развести по домам сам. Сколько возможных

сам. Сколько возможных вариантов развоза гостей домой существует, если

учесть, что Кот Матроскин, Шарик и Дядя Фёдор живут в одном доме?

Решение:
5×4×3×2×1=120 (вариантов)развоза гостей существует.
Ответ: 120 возможных вариантов развоза гостей существует.


  • Имя файла: kombinatornye-zadachi-5-klass.pptx
  • Количество просмотров: 92
  • Количество скачиваний: 0