Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Математические модели

Содержание

09.06.2013§ 2.4. Математические модели Основным языком информационного моделирования в науке является язык математики. Модели, построенные с использованием математических понятий и формул, называются математическими моделями.Математическая модель - информационная модель, в которой параметры и зависимости между
09.06.2013Математические модели7 классВыполнила презентациюучитель информатики МОУ «СОШ №20» Поспелова Г. В.г. Новомосковск Тульская область 09.06.2013§ 2.4. Математические модели   Основным языком информационного моделирования в науке 09.06.2013Например, известное уравнение S=vt, где S - расстояние, v - скорость t 09.06.2013Рассматривая физическую систему: тело массой m, скатывающееся по наклонной плоскости с ускорением 09.06.2013Метод моделирования дает возможность применять математический аппарат к решению практических задач. Понятия 09.06.2013При математическом моделировании исследование объекта осуществляется посредством изучения модели, сформулированной на языке 09.06.2013   Рассмотрим пример приведения решения конкретной задачи к математической модели. Через иллюминатор затонувшего 09.06.2013Если          , то 09.06.2013Пример 1:Вычислить количество краски для покрытия пола в спортивном зале.   Для решения 09.06.2013Пример 2:Через первую трубу бассейн наполняется за 30 часов, через вторую трубу 09.06.2013Пример 3:На шоссе расположены пункты А и В, удалённые друг от друга 09.06.2013Первое число равно x, а второе на 2,5 больше первого. Известно, что 09.06.2013   Вот так обычно применяется математика к реальной жизни. Математические модели бывают не 09.06.2013Задание на дом:§ 2.4 (стр. 54-58)№№ 1, 2, 3, 4 (стр. 57) в тетради 09.06.2013Спасибо за урок! 09.06.2013ИсточникиИнформатика и ИКТ : учебник для 7 классаАвтор : Босова Л. Л. Издательство :
Слайды презентации

Слайд 2 09.06.2013
§ 2.4. Математические модели

Основным языком

09.06.2013§ 2.4. Математические модели  Основным языком информационного моделирования в науке

информационного моделирования в науке является язык математики.
Модели, построенные

с использованием математических понятий и формул, называются математическими моделями.

Математическая модель - информационная модель, в которой параметры и зависимости между ними выражены в математической форме.


Слайд 3 09.06.2013
Например, известное уравнение S=vt, где
S - расстояние,

09.06.2013Например, известное уравнение S=vt, где S - расстояние, v - скорость


v - скорость
t - время,
представляет

собой модель равномерного движения, выраженную в математической форме.

Слайд 4 09.06.2013
Рассматривая физическую систему: тело массой m, скатывающееся по

09.06.2013Рассматривая физическую систему: тело массой m, скатывающееся по наклонной плоскости с

наклонной плоскости с ускорением a под воздействием силы F,

Ньютон получил соотношение F = mа.

Это математическая модель физической системы.


Слайд 5 09.06.2013
Метод моделирования дает возможность применять математический аппарат к

09.06.2013Метод моделирования дает возможность применять математический аппарат к решению практических задач.

решению практических задач. Понятия числа, геометрической фигуры, уравнения, являются

примерами математических моделей.
К методу математического моделирования в учебном процессе приходится прибегать при решении любой задачи с практическим содержанием. Чтобы решить такую задачу математическими средствами, ее необходимо вначале перевести на язык математики (построить математическую модель).

Математическое моделирование



Слайд 6 09.06.2013
При математическом моделировании исследование объекта осуществляется посредством изучения

09.06.2013При математическом моделировании исследование объекта осуществляется посредством изучения модели, сформулированной на

модели, сформулированной на языке математики.
Пример: нужно определить площадь поверхности

стола. Измеряют длину и ширину стола, а затем перемножают полученные числа. Это фактически означает, что реальный объект – поверхность стола – заменяется абстрактной математической моделью прямоугольником. Площадь этого прямоугольника и считается искомой.
Из всех свойств стола выделили три: форма поверхности (прямоугольник) и длины двух сторон. Не важны ни цвет стола, ни материал, из которого он сделан, ни то, как он используется.
Предположив, что поверхность стола – прямоугольник, легко указать исходные данные и результат. Они связаны соотношением S=ab.

Слайд 7 09.06.2013
   Рассмотрим пример приведения решения конкретной задачи к математической

09.06.2013   Рассмотрим пример приведения решения конкретной задачи к математической модели. Через иллюминатор

модели.
Через иллюминатор затонувшего корабля требуется вытащить сундук с

драгоценностями. Даны некоторые предположения о формах сундука и окнах иллюминатора и исходные данные решения задачи.
Предположения: Иллюминатор имеет форму круга. Сундук имеет форму прямоугольного параллелепипеда.
Исходные данные: D - диаметр иллюминатора; x - длина сундука; y - ширина сундука; z - высота сундука.
Конечный результат: Сообщение: можно или нельзя вытащить.

Слайд 8 09.06.2013
Если

09.06.2013Если     , то сундук можно вытащить, а

, то сундук можно вытащить, а если


, то нельзя.



Системный анализ условия задачи выявил связи между размером иллюминатора и размерами сундука, учитывая их формы. Полученная в результате анализа информация отобразилась в формулах и соотношениях между ними, так возникла математическая модель.
Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом:










Слайд 9 09.06.2013
Пример 1:
Вычислить количество краски для покрытия пола в

09.06.2013Пример 1:Вычислить количество краски для покрытия пола в спортивном зале.   Для

спортивном зале.
   
Для решения задачи нужно знать площадь пола.

Для выполнения этого задания измеряют длину, ширину пола и вычисляют его площадь. Реальный объект – пол зала – занимается прямоугольником, для которого площадь является произведением длины на ширину. При покупке краски выясняют, какую площадь можно покрыть содержимым одной банки, и вычисляют необходимое количество банок.
Пусть A – длина пола,   B  - ширина пола, S1  - площадь, которую можно покрыть содержимым одной банки, N – количество банок.
Площадь пола вычисляем по формуле S=A×B, а количество банок, необходимых для покраски зала, N= A×B/S1.

Слайд 10 09.06.2013
Пример 2:
Через первую трубу бассейн наполняется за 30

09.06.2013Пример 2:Через первую трубу бассейн наполняется за 30 часов, через вторую

часов, через вторую трубу – за 20 часов. За

сколько часов бассейн наполнится через две трубы?
Решение:
Обозначим время заполнения бассейна через первую и вторую трубу А и В соответственно. Примем за 1 весь объём бассейна, искомое время обозначим через t.
Так как через первую трубу бассейн наполняется за А часов, то 1/А –часть бассейна, наполняемая первой трубой за 1 час; 1/В - часть бассейна, наполняемая второй трубой за 1 час.
Следовательно, скорость наполнения бассейна первой и второй трубами вместе составит: 1/А+1/В.
Можно записать: (1/А+1/В)t=1. получили математическую модель, описывающую процесс наполнения бассейна из двух труб.
Искомое время можно вычислить по формуле:



Слайд 11 09.06.2013
Пример 3:

На шоссе расположены пункты А и В,

09.06.2013Пример 3:На шоссе расположены пункты А и В, удалённые друг от

удалённые друг от друга на 20 км. Мотоциклист выехал

из пункта В в направлении, противоположном А со скоростью 50 км/ч.
Составим математическую модель, описывающую положение мотоциклиста относительно пункта А через t часов.
За t часов мотоциклист проедет 50t км и будет находится от А на расстоянии 50t км + 20 км. Если обозначить буквой s расстояние (в километрах) мотоциклиста до пункта А, то зависимость этого расстояния от времени движения можно выразить формулой: S=50t + 20, где t>0.

Слайд 12 09.06.2013
Первое число равно x, а второе на 2,5

09.06.2013Первое число равно x, а второе на 2,5 больше первого. Известно,

больше первого. Известно, что 1/5 первого числа равна 1/4

второго.

Составьте математические модели данных ситуаций:

У Миши x марок, а у Андрея в полтора раз больше. Если Миша отдаст Андрею 8 марок, то у Андрея станет марок вдвое больше, чем останется у Миши.

Во втором цехе работают x человек, в первом – в 4 раза больше, чем во втором, а в третьем - на 50 человек больше, чем во втором. Всего в трех цехах завода работают 470 человек.

Проверим:

Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: было у Миши х марок; у Андрея 1,5х. Стало у Миши х-8, у Андрея 1,5х+8. По условию задачи 1,5х+8=2(х-8).

Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: во втором цехе работают x человек, в первом – 4х, а в третьем - х+50. х+4х+х+50=470.

Математической моделью решения этой задачи являются следующие зависимости между исходными данными и результатом: первое число х; второе х+2,5. По условию задачи х/5=(х+2,5)/4.


Слайд 13 09.06.2013

   Вот так обычно применяется математика к реальной жизни.

09.06.2013   Вот так обычно применяется математика к реальной жизни. Математические модели бывают


Математические модели бывают не только алгебраические (в виде равенства

с переменными, как в разобранных выше примерах), но и в другом виде: табличные, графические и другие.
С другими видами моделей мы познакомимся на следующем занятии.

Слайд 14 09.06.2013
Задание на дом:
§ 2.4 (стр. 54-58)

№№ 1, 2,

09.06.2013Задание на дом:§ 2.4 (стр. 54-58)№№ 1, 2, 3, 4 (стр. 57) в тетради

3, 4 (стр. 57) в тетради



Слайд 15 09.06.2013
Спасибо за урок!

09.06.2013Спасибо за урок!

  • Имя файла: matematicheskie-modeli.pptx
  • Количество просмотров: 120
  • Количество скачиваний: 0