Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Описательная статистика

Среднее значение.Определение: Средним арифметическим нескольких чисел называется число, равное отношению суммы этих чисел к их количеству. Другими словами, среднее арифметическое – это дробь, в числителе которой стоит сумма чисел, а
Презентация по теории вероятностей. На тему:”Описательная статистика”. Среднее значение.Определение: Средним арифметическим нескольких чисел называется число, Таблица 1. Производство пшеницы в России в 1995-2001гг.(30,1+34,9+44,3+27,0+31,0+34,5+47,0):7 ≈ 35,5.Получаем, что среднее Таблица 2. Урожайность зерновых культур в России в 1992-2001 гг.а)Средняя урожайность зерновых Таблица 3. Население шести крупнейших городов Московской области в разные годы, тыс. Медиана.Определение: Медианой набора чисел называют такое число, которое разделяет набор на две Пример 4.Найти медиану Пример 5.  Таблица Наибольшее и наименьшее Таблица 7. Производство зерна в России.Найти наибольшее, наименьшее значение и размах (А):а)произ-ва Отклонения.Определение: отклонение – это Дисперсия.Определение: среднее арифметическое Таблица 8. Производство пшеницы в России в 1995-2001гг., млн. тонн.Для расчета дисперсии Пример 2. Упражнения.1.Для
Слайды презентации

Слайд 2 Среднее значение.
Определение: Средним арифметическим

Среднее значение.Определение: Средним арифметическим нескольких чисел называется число, равное

нескольких чисел называется число, равное отношению суммы этих чисел

к их количеству.
Другими словами, среднее арифметическое – это дробь, в числителе которой стоит сумма чисел, а в знаменателе – их количество.

Слайд 3 Таблица 1. Производство пшеницы в России в 1995-2001гг.
(30,1+34,9+44,3+27,0+31,0+34,5+47,0):7

Таблица 1. Производство пшеницы в России в 1995-2001гг.(30,1+34,9+44,3+27,0+31,0+34,5+47,0):7 ≈ 35,5.Получаем, что

≈ 35,5.
Получаем, что среднее производство пшеницы в России за

рассматриваемый период 1995-2001гг. Составляло приблизительно 35,5 млн. тонн в год.

Слайд 4 Таблица 2. Урожайность зерновых культур в России в

Таблица 2. Урожайность зерновых культур в России в 1992-2001 гг.а)Средняя урожайность

1992-2001 гг.
а)Средняя урожайность зерновых культур в России за 1992-1996гг.
(18,0+17,1+15,3+13,1+14,9):5

≈ 15,68.

б)Средняя урожайность зерновых культур в России за 1997-2001гг.
(17,8+12,9+14,4+15,6+19,4):5 ≈ 16,02.

в)Средняя урожайность зерновых культур в России за 1992-2001гг.
(18,0+17,1+15,3+13,1+14,9+17,8+12,9+14,4+15,6+19,4):10 ≈ 15,85.


Слайд 5 Таблица 3. Население шести крупнейших городов Московской области

Таблица 3. Население шести крупнейших городов Московской области в разные годы,

в разные годы, тыс. чел.
Среднее число жителей крупнейших городов

Московской области
а)в 1959г. (58+118+95+99+129+47):6 ≈ 91.
б)в 1970г. (92+136+139+119+169+85):6 ≈ 123,3
в)в 1979г. (117+147+154+141+202+119):6 ≈ 146,6
г)в 2002г. (148+150+157+159+182+141):6 ≈ 156,7
д)в 2006г. (183+148+159+162+180+180):6 ≈ 168,6

Слайд 6 Медиана.

Определение: Медианой набора чисел называют такое число, которое

Медиана.Определение: Медианой набора чисел называют такое число, которое разделяет набор на

разделяет набор на две равные по численности части.

Пример 1.

Возьмём какой-нибудь набор различных чисел, например 1,4,7,9,11.
Медианой в этом случае оказывается число, стоящее в точности посередине, m=7.

Пример 2. Рассмотрим набор 1,3,6,11. Медианой этого набора служит любое число, которое больше 3 и меньше 6. По определению в качестве медианы в таких случаях берут центр срединного интервала. В нашем случае это центр интервала (3,6). Это полусумма его концов
(3+6):2=4,5
Медианой этого набора считают число 4,5.

Слайд 7

Пример 3. Таблица 4. Производство

Пример 3. Таблица 4. Производство пшеницы

в России в 1995-2001гг.

Средний урожай 35,5 млн. тонн в год. Вычислим медиану. Упорядочим числа:

27,0; 30,1; 31,0; 34,5; 34,9; 44,3; 47,0.

Медиана равна 34,5 млн. тонн (урожай 2000г.)


Слайд 8

Пример 4.Найти медиану следующих наборов чисела)2,4,8,9

Пример 4.
Найти медиану следующих наборов чисел
а)2,4,8,9

(4+8):2=6 m=6

б)1,3,5,7,8,9 (5+7):2=6 m=6

в)10,11,11,12,14,17,18,22
(12+14):2=13 m=13

Слайд 9

Пример 5. Таблица 5. Урожайность зерновых культур

Пример 5. Таблица 5. Урожайность зерновых культур в России

в 1992-2001гг.

По данным таблицы вычислить медиану урожайности и среднюю урожайность зерновых культур в России за период:
а)1992-2001гг. m=(15,3+15,6):2=15,45
среднее ≈ 15,85
б)1992-1996гг. m=15,3
среднее ≈ 15,68
в)1997-2001гг. m=15,6
среднее ≈ 16,02


Слайд 10 Наибольшее и наименьшее

Наибольшее и наименьшее     значение. Размах.Определение:

значение. Размах.
Определение:

Разность между наибольшим и наименьшим числом называется размахом набора чисел.

Таблица 6. Производство пшеницы в России в 1995-2001гг.

Самый большой урожай пшеницы в эти годы был получен в 2001г. Он составил 47,0 млн. тонн. Самый маленький урожай 27,0 млн. тонн был собран в 1998г. Размах производства пшеницы в эти годы составил 20 млн. тонн. Это довольно большая величина по сравнению со средним значением производства в эти годы 35,5 млн. тонн.


Слайд 11 Таблица 7. Производство зерна в России.
Найти наибольшее, наименьшее

Таблица 7. Производство зерна в России.Найти наибольшее, наименьшее значение и размах

значение и размах (А):
а)произ-ва зерновых наиб. =

86,6 наим. = 65,5 А= 21,1.
б)произ-ва пшеницы наиб. = 50,6 наим. = 34,1 А= 16,5.
в)урожайности наиб. = 19,6 наим. = 15,6 А = 4.

Слайд 12

Отклонения.Определение: отклонение – это разница между каждым

Отклонения.
Определение: отклонение – это разница между каждым числом набора

и средним значением.

Пример: возьмём набор 1,6,7,9,12. Вычислим среднее арифметическое: (1+6+7+9+12):5=7. Найдём отклонение каждого числа от среднего:
1-7=-6, 6-7=-1, 7-7=0, 9-7=2, 12-7=5.

Сумма отклонений чисел от среднего арифметического этих чисел равна нулю.

Слайд 13

Дисперсия.Определение: среднее арифметическое квадратов отклонений от

Дисперсия.
Определение: среднее арифметическое квадратов отклонений от среднего значения

называется в статистике дисперсией набора чисел.

Пример 1. Снова обратимся к таблице производства пшеницы в России. Мы нашли, что среднее производство пшеницы за период 1995-2001гг. составило 35,5 млн. тонн в год. Вычислим дисперсию. Составим таблицу, разместив данные по производству не в строке, а в столбце. Вычислим отклонения от среднего и их квадраты. Полученные числа занесём в два новых столбца.

Слайд 14 Таблица 8. Производство пшеницы в России в 1995-2001гг.,

Таблица 8. Производство пшеницы в России в 1995-2001гг., млн. тонн.Для расчета

млн. тонн.
Для расчета дисперсии следует сложить все значения в

столбце «Квадрат отклонений» и разделить на количество слагаемых:

(29,16+0,36+77,44+72,25+20,25+1,00+132,25):7=47,53.

  • Имя файла: opisatelnaya-statistika.pptx
  • Количество просмотров: 156
  • Количество скачиваний: 11