Слайд 2
«Счет, вычисления – основа порядка в голове»
Песталоцци
Слайд 3
Цель проекта:
Найти, изучить, применить на практике приемы быстрого
счета;
Познакомить с приемами быстрого счета одноклассников.
Слайд 4
Задачи
Расширить знания по теме «Натуральные числа».
Научиться собирать
информацию, выделять главное, делать выводы.
Слайд 6
Натуральные числа
Вывод: Из найденных определений следует, что название
«натуральные» числа получили благодаря природе.
Существуют два подхода к
определению натуральных чисел — числа, используемые при:
перечислении (нумеровании) предметов (первый, второй, третий, …);
обозначении количества предметов (нет предметов, один предмет, два предмета, …).
Слайд 7
Джузеппе Пеано
(Giuseppe Peano; 1858—1932)
— итальянский математик
Формальное
определение натуральных чисел в XIX веке сформулировал итальянский математик
Джузеппе Пеано. Он внёс вклад в математическую логику, аксиоматику, философию математики.
Слайд 8
Аксиомы Пеано
«1 есть натуральное число»;
«следующее за натуральным числом
есть натуральное число»;
«1 не следует ни за каким натуральным
числом»;
«всякое натуральное число следует только за одним натуральным числом»;
Аксиома полной индукции.
Слайд 9
Математическая индукция
Математическая индукция — в математике — один
из методов доказательства. Используется, чтобы доказать истинность некоего утверждения
для всех натуральных чисел. Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино.
Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку. Тогда, если мы толкнём первую косточку, то все косточки в ряду упадут.
Слайд 11
Легко умножать нам помогают следующие свойства:
умножение числа
на 0, на 1, на 10, 100,1000 …,
свойства
умножения:
Переместительное: a+b = b+a
Сочетательное: a+b+c = a+c+b
Распределительное: a·(b+c)=ab+ac
Слайд 12
Умножение и деление на 4
Чтобы число умножить на
4, его дважды удваивают. Например:
Чтобы число разделить на 4,
его дважды делят на 2. Например:
Слайд 13
Умножение и деление на 5,50,500,…
Чтобы число умножить на
5, 50, 500…нужно умножить его на 10, 100, 1000,
… и разделить на 2. Например:
Чтобы разделить число на 5, 50,500, … нужно разделить его на 10,100, 1000,…и умножить на 2. Например:
10800 : 50 = 10800:100·2 =216
Слайд 14
Умножение на 25, 250,2500,…
Чтобы число умножить на 25,
250, 2500, … нужно умножить его 100,1000,10000,… и
полученный результат разделить на 4. (На 4 делятся те и только те числа, у которых две последние цифры числа выражают число, делящееся на 4)
Например:
124 ⋅ 25 = 124 : 4 ⋅ 100 = 3100
1716 ⋅ 25 = 1716 : 4 ⋅ 100 = 42900
542·25=(542·100):4=13550
Слайд 15
Деление на 25, 250,2500,…
Чтобы выполнить деление числа на
25, 25,250,2500 и т. д. это число надо разделить
на 100,1000,10000 и т.д. и умножить на 4.
31200: 25 = 31200:100·4 = 1248
Слайд 16
Чтобы число умножить на 125, надо это число
разделить на 8 и умножить на 1000. ( На
8 делятся те и только те числа, у которых три последние цифры выражают число, делящаяся на 8). Например:
32 ⋅ 125 = 32 : 8 ⋅ 1000 = 4000
3168 ⋅ 125 = 3168 : 8 ⋅ 1000 = 396 000
Умножение на 125, 1250, 12500,…
Слайд 17
Деление на 125, 1250, 12500,…
Чтобы число разделить на
125, 1250, 12500…надо это число разделить на 1000 и
умножить на 8.
Например:
4000 : 125 = 4000 : 1000 ⋅ 8 = 32
9000 : 125 = 9000 : 1000 ⋅ 8 = 72
Слайд 18
Умножение на 1,5
Чтобы умножить число на 1,5, нужно
к исходному числу прибавить его половину.
Например:
Слайд 19
Умножение на 9
Чтобы умножить число на 9, к
нему приписывают 0 и отнимают исходное число.
Например:
Слайд 20
Умножение на 11
Чтобы умножить число на 11, к
нему приписывают 0
и прибавляют исходное число.
Например:
Слайд 21
Чтобы двузначное число умножить на 11, сумма цифр
которого не превышает 10, надо цифры этого числа раздвинуть
и поставить между ними сумму этих цифр.
72 × 11 = 7 ( 7 + 2 ) 2 = 792
35 × 11 = 3 ( 3 + 5 ) 5 = 385
Умножение на 11
Слайд 22
Чтобы умножить на 11 двузначное число, сумма цифр
которого 10 или больше 10, надо мысленно раздвинуть цифры
этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить единицу, а вторую и последнюю (третью) оставить без изменения.
94 × 11 = 9 ( 9 + 4 ) 4 = 9 (13 ) 4 = (9 +1) 34 = 1034
73 × 11 = 7 ( 7 + 3 ) 3 = 7 ( 10 ) 3 = ( 7 + 1) 03 = 803
Умножение на 11
Слайд 23
Умножение двухзначного числа на 111
Умножим 42 на 111.
Мысленно
раздвигаем цифры первого сомножителя 42 (4…2), предварительно найдя сумму
его цифр: 4+2=6, и вставляем полученную сумму, повторив эту операцию дважды:
4…2=4662,
42 · 111=4662
36×111= 3996
72×111=7992
35×111=3885
61×111=6771
Слайд 24
Возведение в квадрат числа, оканчивающегося цифрой 5
Чтобы возвести
в квадрат число, оканчивающееся цифрой 5 (например, 65), умножают
число его десятков (6) на число десятков, увеличенное на 1 (на 6+1 = 7), и к полученному числу приписывают 25
652 = (6·7)25= 4225
Например:
Слайд 25
Как я узнаю?
Запишите номер дома, где вы живете
умножьте на 4,
к результату прибавьте 7,
полученное число
умножьте на 25
прибавьте к полученному произведению свой возраст ( целое число ваших лет)
прибавьте число 125.
Скажите мне какое у вас получилось число и я назову вам номер дома, в котором вы живете и сколько вам лет.
Слайд 26
Решение:
Пусть а – порядковый номер дома, в
– ваш возраст, тогда
( 4а + 7) ·25
+ в + 125 =
= 100 а + 175 + в + 125 = 100 а + в + 300
(Из названного ответа отнимаем 300, две последние цифры означают возраст, следующие - номер дома)