Слайд 2
ОБОРУДОВАНИЕ ДЛЯ МАГНИТНОГО
ОБОГАЩЕНИЯ
При магнитном обогащении применяют оборудование
различных типов: магнитные и электромагнитные сепараторы, железоотделители, анализаторы, дешламаторы,
намагничивающие и размагничивающие аппараты.
Сепараторы состоят из следующих основных узлов: магнитной или электромагнитной системы, питателя или питающего короба, рабочего органа (барабана, валка, диска и т.п.), предназначенного для извлечения магнитного продукта и его удаления из рабочей зоны, кожуха или ванны с отделениями для магнитного и немагнитного продуктов и пульта управления (при наличии электромагнитной системы).
Сильные поля сепараторов для слабомагнитных руд создаются электромагнитными системами. В сепараторах со слабым полем для сильномагнитных руд большее распространение получили магнитные системы из постоянных анизотропных ферритобариевых и ферритостронциевых магнитов, а так же постоянные магниты с высокой магнитной энергией (на базе сплава неодим – железо – бор).
Слайд 3
Магнитный барабанный сепаратор 206-СЭ предназначен для обогащения мелкозернистой
магнетитовой руды, получения высококачественных железных порошков и обезжелезнения различных
материалов.
1 – скребок;
2 – барабан;
3 – бункер;
4 – вибрационный питатель;
5 – патрубок для отсоса пыли;
6 – магнитная система;
7 – кожух с приемниками продуктов сепарации;
8 – рама.
По ГОСТ10512-87 сепараторы обозначены: 1-я буква – Э – электромагнитные, П – с постоянными магнитами; 2-я и 3-я буквы – БМ – барабанные для мокрой сепарации, БС – барабанные для сухой сепарации, ВМ – валковые для мокрой сепарации, ВС – валковые для сухой сепарации; последующие буквы – П – с противоточной ванной, ПП – с полупротивоточной ванной, Ц – работающий в центробежном режиме (высокая скорость вращения барабана), В – верхняя подача питания в рабочую зону.
Слайд 4
Схемы магнитных барабанных сепараторов для мокрого обогащения
со
слабым полем с различными типами ванн.
Барабанные магнитные сепараторы со
слабым полем с нижним питанием с прямоточной (а), противоточной (б, в) и полу противоточной (г) ваннами. При большом выходе хвостов (более 50 %) технологические показатели этих сепараторов близки между собой.
Слайд 5
Прямоточные сепараторы используются для руды крупностью
< 2(3) мм , полупротивоточные < 0,3 мм.
Полупротивоточные сепараторы. Н. Весьма
чувствительны к изменениям производительности, крупности и плотности питания. Уменьшение производительности ниже допустимого предела, повышение крупности и плотности питания полупротивоточного сепаратора могут привести к его забивке.
Прямоточные сепараторы. Н. При высоком содержании магнитной фракции (более 70 %) показатели работы значительно уступают показателям противоточных и полупротивоточных сепараторов.
Д. По надежности эксплуатации прямоточные сепараторы превосходят противоточные и полупротивоточные. Конструктивные особенности прямоточных и полупротивоточных сепараторов позволяют компоновать их горизонтально.
Противоточные сепараторы. Н. Компоновка требует значительного перепада высот (600-1000 мм) между соседними аппаратами. Противоточные сепараторы, по сравнению с прямоточными и полупротивоточными, имеют наибольший износ барабана и ванны.
Слайд 6
Прямоточный магнитный барабанный сепаратор (ПБМ-90/250). 1 – рама;
2 – ванна; 3 – успокоитель; 4 – распределительная
коробка; 5 и 11 – соответственно загрузочная и разгрузочная коробка; 6 – барабан;
7 – привод; 8 – брызгало; 9 – магнитная система; 10 – концентратный лоток; 12 – хвостовой патрубок; 13 – хвостовая насадка; 14 – питающий лоток.
Предназначен для обогащения
слива стержневых мельниц и
классификаторов, снабжен
шестиполюсными системами
из литых никель-кобальтовых
или ферритобариевых
магнитов.
Слайд 7
Противоточный магнитный барабанный сепаратор (ПБМ-П-90/250) предназначен для обогащения
сливов шаровых мельниц и классификаторов. Снабжен шестиполюсными системами из
литых
никель-кобальтовых или ферритобариевых магнитов.
1 – хвостовая насадка; 2 – хвостовой патрубок; 3 – рама;
4 – ванна; 5 – магнитная система; 6 – привод; 7 – барабан;
8 – брызгало; 9 и 14 – соответственно
загрузочная и разгрузочная коробка;
10 – распределительная коробка;
11 – успокоитель;
12 – питающие патрубки;
13 – питающий лоток.
Питание по трубам поступает
в загрузочные коробки, из
которых подается на
успокоители и в
распределительную коробку,
затем через патрубки
направляется на питающий
лоток под вращающийся барабан.
Магнитные частицы
притягиваются к барабану
и перемещаются к краю
магнитной системы и
направляются в разгрузку.
Слайд 8
Полупротивоточный магнитный барабанный сепаратор (ПБМ-ПП-90/250) предназначен для обогащения
сливов гидроциклонов, классификаторов и песков дешламаторов с содержанием более 60-70 %
класса –
0,074 мм.
1 – рама; 2 – хвостовые патрубки; 3 – брызгало для разбавления питания; 4 – ванна; 5 – успокоитель; 6 и 12 – соответственно загрузочная и разгрузочная коробка; 7 – распределительная коробка; 8 – барабан; 9 – привод; 10 – брызгало; 11 – магнитная система.
Питание по трубе поступает в загрузку сепаратора, направляется в низ ванны, под барабан. Магнитные частицы притягиваются к барабану и перемещаются к краю магнитной системы, где они разгружаются. Немагнитные частицы разгружаются через хвостовой порог и хвостовой патрубок. Зазор между барабаном и хвостовым лотком составляет 40-50 мм.
Слайд 9
Электромагнитный сепаратор со слабым полем для регенерации ферромагнитных
утяжелителей (ЭБМ-80/170) предназначен для регенерации ферромагнитных утяжелителей при гравитационном
обогащении руд и углей и для магнитного обогащения магнетитовых руд. Сепаратор имеет секторную электромагнитную систему и оригинальную конструкцию противоточной ванны. Специальные уплотнения на торцовых стенках ванны обеспечивают большую глубину погружения барабана, что
увеличивает длину рабочей
зоны. Магнитный продукт
удаляется с помощью скребка,
установленного над разгрузкой
слива.
1 – привод; 2 – питающий лоток; 3 и 9 – соответственно загрузочная и разгрузочная коробка; 4 и 6 – соответственно отжимной и очищающий скребок; 5 – барабан; 7 – электромагнитная система; 8 – противоточная ванна; 10 – сливной патрубок; 11 – рама; 12 – хвостовые насадки.
Слайд 10
Электромагнитный валковый сепаратор (ЭВС-28/9) с нижним питанием предназначен
для обогащения руд редких металлов и олова, а также
для обезжелезнения различных материалов, в частности, белого и нормального электрокорунда, стекольного сырья и т.д.
1 – электромагнитная система; 2 – питатель; 3 – полюсный наконечник; 4 – валок; 5 – сборник.
Сспециальный профиль зубцов валка и бесщелевого полюсного наконечника, многопродуктовый сборник позволяют получить за один прием обогащения несколько
продуктов, отличающихся по магнитным свойствам, в том числе конечный концентрат, отвальные хвосты и промпродукт, подвергаемый перечистке. Материал поступает самотеком в рабочую зону сильного магнитного поля, частицы выносятся вращающимся валком в зону ослабленного магнитного поля, где они отрываются. Немагнитные частицы скользят по впадинам наконечника. Продукты обогащения поступают в сборник из четырех отсеков. Продукты смежных отсеков объединяются с требованиями к их качеству.
Слайд 11
АППАРАТЫ ДЛЯ НАМАГНИЧИВАНИЯ И РАЗМАГНИЧИВАНИЯ
На обогатительных фабриках
для обогащения тонковкрапленных магнетитовых руд и в установках для
регенерации ферромагнитных утяжелителей предусматривают операции намагничивания и размагничивания отдельных продуктов.
Намагничивающие аппараты предназначены для магнитной флокуляции сильномагнитных частиц с целью их более быстрого осаждения по сравнению с немагнитными частицами. Намагничивающий аппарат устанавливают на трубопроводе, по которому транспортируется пульпа. Намагничивающие аппараты конструкции института «Механобр», а – 202-СЭ; б – 264-СЭ: 1 – труба; 2 – магниты; 3 – футеровка; 4 – ярмо
Слайд 12
Размагничивающие аппараты предназначены для дефлокуляции сильномагнитных частиц, так
как наличие магнитных флокул нарушает процессы классификации и фильтрования.
Размагничивающий
аппарат 176-СЭ: 1 – труба из немагнитной стали; 2 – катушки; 3 – защитный кожух; 4 – контактная коробка; 5 – опорная рама.
Размагничивание сильномагнитной пульпы происходит при многократном циклическом перемагничивании ее в переменном магнитном поле (не менее 10 циклов). Амплитуда напряженности этого поля убывает в направлении перемещения пульпы от некоторого максимального значения до нуля. Максимальная напряженность для размагничивания магнетита и негранулированного ферросилиция составляет 40 кА/м, а градиент напряженности в зоне убывания поля – не должен превышать 33 кА/м2.
Слайд 13
ПРАКТИКА МАГНИТНОГО ОБОГАЩЕНИЯ
Обогащение сильномагнитных руд для магнетитовых
руд.
Обогащение обожженных руд.
Применяют для слабомагнитных железных руд
(мартитовых, гематитовых, бурожелезняковых и сидеритовых) после их магнетизирующего обжига и превращения железосодержащих минералов в искусственный магнетит или маггемит. Обожженные руды являются искусственной магнетитовой рудой, и в зависимости от
вкрапленности рудных и нерудных
минералов их обогащают по тем же
схемам, что и магнетитовые руды.
При обогащении обожженных руд размагничивание продуктов
имеет исключительно важное
значение для повышения качества концентрата в связи с
повышенной коэрцитивной силой искусственного магнетита
проводится при напряжености
магнитного поля 95-100 кА/м.
Слайд 14
Обогащение титаномагнетитовых руд. Оно включают магнитное обогащение в
слабом поле для выделения магнетитового концентрата, в который наряду
с железом уходит связанный с ним ванадий, и флотацию – для выделения ильменитового концентрата. Особенностью схемы обогащения является также наличие многократных (до пяти) перечисток магнитного продукта для максимального возможного удаления ильменита в немагнитный продукт, направляемый на флотацию.
Слайд 15
Обогащение комплексных магнетитовых руд.
Магнетитовые руды некоторых месторождений
России и зарубежных стран содержат кобальтоносный пирит, халькопирит, сфалерит,
апатит, циркон и другие полезные минералы.
Для этих руд применяют магнитное обогащение в слабом поле в сочетании с другими обогатительными процессами – гравитацией и флотацией. Так, например, магнетитовая руда Ковдорского месторождения наряду с железом содержит апатит и циркон. Для извлечения железа применяется магнитное обогащение, а для извлечения апатита и циркона – флотация и гравитационное обогащение.
Сульфидные и магнетитовые руды ряда месторождений содержат кобальтоносый пирит, который при магнитном обогащении концентрируется в немагнитном продукте и флотацией выделяется в самостоятельный концентрат. При наличии халькопирита, галенита и других ценных минералов селективной флотацией выделяют соответствующие концентраты.
Слайд 16
Обогащение медно-никелевых руд.
Жильные медно-никелевые руды наряду с
пентландитом и халькопиритом содержат значительное количество сильномагнитного пирротина, с
которым они тесно срастаются. Эти руды подвергают сухому магнитному обогащению, при котором выделяют кусковой сульфидный медно-никелевый концентрат. Этот концентрат, состоящий в основном из пирротина и связанных с ним пентландита и халькопирита, направляется на плавку. Немагнитный продукт с низким содержанием никеля и меди, а также мелкую руду подвергают флотации. По аналогичной схеме обогащают жильные медно-никелевые руды Канады.
Пирротин, в значительном количестве содержащийся в некоторых полиметаллических рудах, извлекают мокрым магнитным обогащением после измельчения руды до крупности 1 мм и менее, при которой происходит раскрытие минералов. Удаление пирротина магнитным обогащением облегчает последующую флотацию для выделения свинцового, цинкового и других концентратов.
Слайд 17
Обогащение магнетитогематитовых и магнетитомартитовых руд - применяют комбинированные
схемы, включающие магнитные методы в сочетании с другими методами
обогащения – гравитационными или флотационными.
При мокром магнитном обогащении, осуществляемом на барабанных магнитных сепараторах, выделяется магнетитовый концентрат, а немагнитный продукт направляется на гравитационное обогащение.