Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему An efficient probabilistic context-free. Parsing algorithm that computes prefix probabilities

Содержание

OverviewWhat is this paper all about?Key ideas from the title:Context-Free ParsingProbabilisticComputes Prefix ProbabilitiesEfficient
Probabilistic Earley ParsingCharlie Kehoe, Spring 2004Based on the 1995 paper by Andreas OverviewWhat is this paper all about?Key ideas from the title:Context-Free ParsingProbabilisticComputes Prefix ProbabilitiesEfficient Context-Free ParsingThe ball is heavy.ParserThe   ball    is  heavy Context-Free ParsingParserGrammarThe ball is heavy.The   ball    is  heavy Context-Free ParsingParserGrammarLexiconThe ball is heavy.The   ball    is  heavy Context-Free ParsingWhat if there are multiple legal parses?Example: “Yair looked over the Probabilistic ParsingUse probabilities to find the most likely parseStore typical probabilities for Prefix ProbabilitiesHow likely is a partial parse?Yair  looked over …Yair  looked over …SNPVPVNPSNPVPVNPPPPNNor EfficiencyThe Earley algorithm (upon which Stolcke builds) is one of the most Parsing AlgorithmsHow do we construct a parse tree?Work from grammar to sentence Earley Parsing OverviewStart with a root constituent, e.g. sentenceUntil the sentence is Earley Parsing OverviewEarley parsing uses a chart rather than a tree to Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ Probabilistic ParsingHow do we parse probabilistically?Assign probabilities to grammar rules and words Probabilistic ParsingTerminologyEarley state: each step of the processing that a constituent undergoes. etc.Probabilistic ParsingCan represent the parse as a Markov chain:Markov assumption (state probability Probabilistic ParsingEvery Earley path corresponds to a parse treeP(tree) = P(path)Assign a Probabilistic Parse ExampleGrammarLexicon Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Probabilistic Parse Example Prefix ProbabilitiesCurrent algorithm reports parse tree probability when the sentence is completedWhat Prefix ProbabilitiesSolution: add a separate path probabilitySame as before, but propagate down Prefix Probability Example Prefix Probability Example Prefix Probability Example Prefix Probability Example Prefix Probability Example Prefix Probability Example Prefix Probability Example Prefix Probability Example Prefix Probability Example SummaryUse Earley chart parser for efficient parsing, even with ambiguous or complex
Слайды презентации

Слайд 2 Overview
What is this paper all about?

Key ideas from

OverviewWhat is this paper all about?Key ideas from the title:Context-Free ParsingProbabilisticComputes Prefix ProbabilitiesEfficient

the title:
Context-Free Parsing
Probabilistic
Computes Prefix Probabilities
Efficient


Слайд 3 Context-Free Parsing
The ball is heavy.

Parser

The ball

Context-Free ParsingThe ball is heavy.ParserThe  ball  is heavy

is heavy


Слайд 4 Context-Free Parsing

Parser


Grammar

The ball is heavy.
The ball

Context-Free ParsingParserGrammarThe ball is heavy.The  ball  is heavy

is heavy


Слайд 5 Context-Free Parsing

Parser


Grammar


Lexicon

The ball is heavy.
The ball

Context-Free ParsingParserGrammarLexiconThe ball is heavy.The  ball  is heavy

is heavy


Слайд 6 Context-Free Parsing
What if there are multiple legal parses?
Example:

Context-Free ParsingWhat if there are multiple legal parses?Example: “Yair looked over

“Yair looked over the paper.”
How does the word “over”

function?

Yair looked over the paper

S

NP

VP

V

NP

Yair looked over the paper

S

NP

VP

V

NP

PP

P

N

N

or


Слайд 7 Probabilistic Parsing
Use probabilities to find the most likely

Probabilistic ParsingUse probabilities to find the most likely parseStore typical probabilities

parse
Store typical probabilities for words and rules
In this case:
P

= 0.99

P = 0.01

Yair looked over the paper

S

NP

VP

V

NP

Yair looked over the paper

S

NP

VP

V

NP

PP

P

N

N

or


Слайд 8 Prefix Probabilities
How likely is a partial parse?
Yair

Prefix ProbabilitiesHow likely is a partial parse?Yair looked over …Yair looked over …SNPVPVNPSNPVPVNPPPPNNor

looked over …
Yair looked over …
S
NP
VP
V
NP
S
NP
VP
V
NP
PP
P
N
N
or


Слайд 9 Efficiency

The Earley algorithm (upon which Stolcke builds) is

EfficiencyThe Earley algorithm (upon which Stolcke builds) is one of the

one of the most efficient known parsing algorithms

Probabilities allow

intelligent pruning of the developing parse tree(s)

Слайд 10 Parsing Algorithms

How do we construct a parse tree?
Work

Parsing AlgorithmsHow do we construct a parse tree?Work from grammar to

from grammar to sentence (top-down)
Work from sentence to grammar

(bottom-up)
Work from both ends at once (Earley)

Predictably, Earley works best

Слайд 11 Earley Parsing Overview
Start with a root constituent, e.g.

Earley Parsing OverviewStart with a root constituent, e.g. sentenceUntil the sentence

sentence
Until the sentence is complete, repeatedly
Predict: expand constituents as

specified in the grammar
Scan: match constituents with words in the input
Complete: propagate constituent completions up to their parents
Prediction is top-down, while scanning and completion are bottom-up

Слайд 12 Earley Parsing Overview
Earley parsing uses a chart rather

Earley Parsing OverviewEarley parsing uses a chart rather than a tree

than a tree to develop the parse
Constituents are stored

independently, indexed by word positions in the sentence
Why do this?
Eliminate recalculation when tree branches are abandoned and later rebuilt
Concisely represent multiple parses

Слайд 13 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 14 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 15 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 16 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 17 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 18 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 19 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 20 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 21 Earley Parsing Example
S → NP VP NP → ART

Earley Parsing Example	S → NP VP	NP → ART N	 VP → V ADJ

N VP → V ADJ


Слайд 22 Probabilistic Parsing

How do we parse probabilistically?
Assign probabilities to

Probabilistic ParsingHow do we parse probabilistically?Assign probabilities to grammar rules and

grammar rules and words in lexicon
Grammar and lexicon “randomly”

generate all possible sentences in the language
P(parse tree) = P(sentence generation)


Слайд 23 Probabilistic Parsing
Terminology
Earley state: each step of the processing

Probabilistic ParsingTerminologyEarley state: each step of the processing that a constituent

that a constituent undergoes. Examples:
Starting sentence
Half-finished sentence
Complete sentence
Half-finished noun

phrase
etc.
Earley path: a sequence of linked states
Example: the complete parse just described

Слайд 24 etc.
Probabilistic Parsing
Can represent the parse as a Markov

etc.Probabilistic ParsingCan represent the parse as a Markov chain:Markov assumption (state

chain:





Markov assumption (state probability is independent of path) applies,

due to CFG


S ►
NP VP
Begin


S
Begin


NP ►
ART N Begin


NP ►
PN Begin


NP Half Done


NP Done


S Half Done

(path abandoned)

Predict S

Predict NP

Scan “the”

Scan “ball”

Complete NP


Слайд 25 Probabilistic Parsing
Every Earley path corresponds to a parse

Probabilistic ParsingEvery Earley path corresponds to a parse treeP(tree) = P(path)Assign

tree
P(tree) = P(path)
Assign a probability to each state transition
Prediction:

probability of grammar rule
Scanning: probability of word in lexicon
Completion: accumulated (“inner”) probability of the finished constituent
P(path) = product of P(transition)s

Слайд 26 Probabilistic Parse Example
Grammar
Lexicon

Probabilistic Parse ExampleGrammarLexicon

Слайд 27 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 28 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 29 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 30 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 31 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 32 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 33 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 34 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 35 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 36 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 37 Probabilistic Parse Example

Probabilistic Parse Example

Слайд 38 Prefix Probabilities

Current algorithm reports parse tree probability when

Prefix ProbabilitiesCurrent algorithm reports parse tree probability when the sentence is

the sentence is completed

What if we don’t have a

full sentence?

Probability is tracked by constituent (“inner”), rather than by path (“forward”)

Слайд 39 Prefix Probabilities

Solution: add a separate path probability

Same as

Prefix ProbabilitiesSolution: add a separate path probabilitySame as before, but propagate

before, but propagate down on prediction step

This is the

missing link to chain the path probabilities together

Слайд 40 Prefix Probability Example

Prefix Probability Example

Слайд 41 Prefix Probability Example

Prefix Probability Example

Слайд 42 Prefix Probability Example

Prefix Probability Example

Слайд 43 Prefix Probability Example

Prefix Probability Example

Слайд 44 Prefix Probability Example

Prefix Probability Example

Слайд 45 Prefix Probability Example

Prefix Probability Example

Слайд 46 Prefix Probability Example

Prefix Probability Example

Слайд 47 Prefix Probability Example

Prefix Probability Example

Слайд 48 Prefix Probability Example

Prefix Probability Example

  • Имя файла: an-efficient-probabilistic-context-free-parsing-algorithm-that-computes-prefix-probabilities.pptx
  • Количество просмотров: 140
  • Количество скачиваний: 0