Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Динамика материальной системы

Содержание

1. Кинетическая энергия МС. Теорема КенигаТеорема Кинетическая энергия материальной системы в ее абсолютном движении (T) складывается из кинетической энергии TO центра масс, в предположении, что в нем сосредоточена масса всей системы, и кинетической энергии Tотн
ДИНАМИКА МАТЕРИАЛЬНОЙ СИСТЕМЫЛЕКЦИЯ 3: ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ 1. Кинетическая энергия МС. Теорема КенигаТеорема Кинетическая энергия материальной системы в ее 2. Доказательство теоремы КенигаПодвижные координаты (2) перемещаются поступательно относительно инерциальных осей (1) 3. Кинетическая энергия ТТ, движущегося поступательнокинетическая энергия ТТ, движущегося поступательно, равна половине 4. Кинетическая энергия ТТ, вращающегося относительно осикинетическая энергия ТТ, вращающегося вокруг неподвижной 5. Кинетическая энергия ТТ, движущегося произвольнокинетическая энергия ТТ складывается из кинетической энергии 6. Кинетическая энергия ТТ при плоском движении 7. Пример вычисления кинетической энергииКаток К массы m1 лежит на горизонтальной плос-кости. 8. Теорема об изменении кинетической энергииДифференциальная форма теоремы об изменении кинетической энергии 9. Работа сил тяжестиПолная работа сил тяжести системы равна весу всей системы, 10. Работа внутренних сил твердого телаСумма работ всех внутренних сил абсолютно твердого 11. Работа силы, приложенной к вращающемуся твердому телуЭлементарная работа силы, приложенной к 12. Работа внутренних сил скольжения сочлененных телПолная мощность внутренних сил трения скольжения 13. Работа потенциальных внутренних силUi-потенциальная энергия внутренних сил (внутренняя энергия) 14. Работа потенциальных внешних силUe-потенциальная энергия внешних силНа точку #1 действуют потенциальные 15. Закон сохранения полной механической энергииUe-потенциальная энергия внешних силДопустим, что внутренние и 16. Пример # 1 Цилиндр катится без скольжения по наклонной плоскости. Начальная 17. Пример # 2 Груз Г под действием силы тяжести опускается из 18. Пример использования 2 К брусу D массы m1 лежащему на гладкой 19. Основные теоремы и законы сохранения
Слайды презентации

Слайд 2 1. Кинетическая энергия МС. Теорема Кенига
Теорема Кинетическая энергия

1. Кинетическая энергия МС. Теорема КенигаТеорема Кинетическая энергия материальной системы в

материальной системы в ее абсолютном движении (T) складывается из

кинетической энергии TO центра масс, в предположении, что в нем сосредоточена масса всей системы, и кинетической энергии Tотн системы в ее движении относительно поступательно перемещающихся в инерциальном пространстве вместе с центром масс осей.


Кинетической энергией материальной системы называется сумма кинетических энергий входящих в нее точек

При вычислении кинетической энергии системы полезна теорема Кенига


Слайд 3 2. Доказательство теоремы Кенига
Подвижные координаты (2) перемещаются поступательно

2. Доказательство теоремы КенигаПодвижные координаты (2) перемещаются поступательно относительно инерциальных осей

относительно инерциальных осей (1) вместе с центром О масс

системы.





Слайд 4 3. Кинетическая энергия ТТ, движущегося поступательно
кинетическая энергия ТТ,

3. Кинетическая энергия ТТ, движущегося поступательнокинетическая энергия ТТ, движущегося поступательно, равна

движущегося поступательно, равна половине произведения массы тела на квадрат

его скорости



Слайд 5 4. Кинетическая энергия ТТ, вращающегося относительно оси
кинетическая энергия

4. Кинетическая энергия ТТ, вращающегося относительно осикинетическая энергия ТТ, вращающегося вокруг

ТТ, вращающегося вокруг неподвижной оси, равна половине произведения момента

инерции тела относительно оси вращения на квадрат угловой скорости тела



Слайд 6 5. Кинетическая энергия ТТ, движущегося произвольно
кинетическая энергия ТТ

5. Кинетическая энергия ТТ, движущегося произвольнокинетическая энергия ТТ складывается из кинетической

складывается из кинетической энергии поступательного движения вместе с центром

масс и кинетической энергии в его вращении относительно центра масс

Теорема Кенига

Кинематика: движение тела относительно поступательно перемещающихся осей (2) представляет собой вращение с угловой скоростью


В общем случае переменная величина т.к. ось вращения изменяет свое положение


Слайд 7 6. Кинетическая энергия ТТ при плоском движении

6. Кинетическая энергия ТТ при плоском движении

Слайд 8 7. Пример вычисления кинетической энергии
Каток К массы m1

7. Пример вычисления кинетической энергииКаток К массы m1 лежит на горизонтальной

лежит на горизонтальной плос-кости. Каток обмотан тросом, перекинутым через

блок Б радиуса r. К свободному концу троса при-креплен груз Г массы m3. При опускании груза со скоростью v трос, разматываясь, приводит в качение без скольжения каток. Определить кинетическую энергию системы, если момент инерции блока Б относительно оси вращения равен I2

Скорость точки касания блока с тросом равна скорости v груза Г.



Слайд 9 8. Теорема об изменении кинетической энергии

Дифференциальная форма теоремы

8. Теорема об изменении кинетической энергииДифференциальная форма теоремы об изменении кинетической

об изменении кинетической энергии : дифференциал кинетической энергии системы

равен сумме элементарных работ всех действующих на систему внешних и внутренних сил.

Интегральная форма теоремы: изменение кинетической энергии системы при перемещении ее из какой-то начальной конфигурации в данную равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил



Слайд 10 9. Работа сил тяжести
Полная работа сил тяжести системы

9. Работа сил тяжестиПолная работа сил тяжести системы равна весу всей

равна весу всей системы, умноженному на вертикальное перемещение ее

центра тяжести

Слайд 11 10. Работа внутренних сил твердого тела
Сумма работ всех

10. Работа внутренних сил твердого телаСумма работ всех внутренних сил абсолютно

внутренних сил абсолютно твердого тела на любом его перемещении

равна нулю




Кинематика


Слайд 12 11. Работа силы, приложенной к вращающемуся твердому телу
Элементарная

11. Работа силы, приложенной к вращающемуся твердому телуЭлементарная работа силы, приложенной

работа силы, приложенной к твердому телу, вращающемуся вокруг неподвижной

оси, равна моменту этой силы относительно оси вращения, умноженному на дифференциал угла поворота тела

Мощность:


Слайд 13

12. Работа внутренних сил скольжения сочлененных тел
Полная мощность

12. Работа внутренних сил скольжения сочлененных телПолная мощность внутренних сил трения

внутренних сил трения скольжения двух
сочлененных тел равна взятому

со знаком минус произведению модуля
силы трения на модуль относительной скорости.

Скорость A относительно B


Слайд 14 13. Работа потенциальных внутренних сил




Ui-потенциальная энергия внутренних сил

13. Работа потенциальных внутренних силUi-потенциальная энергия внутренних сил (внутренняя энергия)

(внутренняя энергия)


Слайд 15 14. Работа потенциальных внешних сил
Ue-потенциальная энергия внешних сил
На

14. Работа потенциальных внешних силUe-потенциальная энергия внешних силНа точку #1 действуют

точку #1 действуют потенциальные внешние силы
На точку #2 действуют

потенциальные внешние силы

На точку #n действуют потенциальные внешние силы




Слайд 16 15. Закон сохранения полной механической энергии
Ue-потенциальная энергия внешних

15. Закон сохранения полной механической энергииUe-потенциальная энергия внешних силДопустим, что внутренние

сил
Допустим, что внутренние и внешние силы, работа которых отлична

от нуля, потенциальны (нулю может равняться работа идеальных связей).

E-полная механическая энергия системы

Систему, для которой имеет место интеграл энергии, называют консервативной.

интеграл энергии


Ui-внутренняя энергия


Слайд 17 16. Пример # 1
Цилиндр катится без скольжения

16. Пример # 1 Цилиндр катится без скольжения по наклонной плоскости.

по наклонной плоскости. Начальная скорость равна нулю. Найти скорость

центра масс цилиндра в момент времени когда он опустился на величину h.




Если это тело спускается не вращаясь, имеем

Следовательно, вращение уменьшает скорость


Слайд 18 17. Пример # 2
Груз Г под действием

17. Пример # 2 Груз Г под действием силы тяжести опускается

силы тяжести опускается из состояния покоя вниз. Определить скорость

v груза Г при опускании его на высоту h. Трением качения катка и трением на оси блока пренебречь.

Связи идеальны. Внутренняя энергия равна нулю



Слайд 19 18. Пример использования 2

К брусу D массы

18. Пример использования 2 К брусу D массы m1 лежащему на

m1 лежащему на гладкой горизонтальной плоскости, прикреплен шарнирно в

точке А однородный стержень АВ, имеющий массу m2 и длину l. Система начинает движение из состояния покоя в момент, когда стержень отклонен до горизонтального положения АВ0. Пренебрегая трением в оси А, найти скорость v бруса в тот момент, когда стержень проходит через вертикаль.

скорость С относительно А

Сохранение энергии

Сохранение импульса





  • Имя файла: dinamika-materialnoy-sistemy.pptx
  • Количество просмотров: 142
  • Количество скачиваний: 0