Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Получение объемных наноматериалов

Основные методы получения объемных материалов
Получение объемных наноматериалов Основные методы получения объемных материалов I. Облучение потоками высокоэнергетических частиц Радиационно-пучковые технологии. Ионно-лучевые, ионно-плазменные технологии и воздействие Радиационное воздействие м.б. использовано для модифицирования и создания новых материалов.Радиационная обработка включает Механизм воздействияAИонный пучокОхлаждение за счет теплопроводностиПробегионовМодифицированиеплазмаДефектообразование Воздействие пучковМеталлическаямишеньМеталлические ионыТвердые растворыНАНОРАЗМЕРНЫЕ ФАЗЫ Интерметаллиды, оксиды, карбидыМишеньМодифицированныйслой Радиационно-пучковые технологии используют тепловую, кинетическую, электрическую и магнитную составляющую энергии и различные При модифицировании происходят различные структурные и фазовые изменения.Наиболее значимыми изменениями являются:Увеличение параметра Виды радиационных технологийПо носителям энергии и с учетом основного модифицирующего фактора1 Ионно-пучковые Виды облученияИонные пучкиУскоренные ионы (и атомы) в виде моноэнергетических или полиэнергетических пучков Низкотемпературная плазмаНизкотемпературная плазма (Т~ 104 К) может быть равновесной (Те Тi Ta) Ионно-плазменные технологииОдновременная или последовательная обработка поверхности ионами и плазмой. Использование ионно-плазменных технологий Концентрированные потоки энергии (КПЭ)	Высокие потоки энергии (десятки и более Дж/см2) можно создавать
Слайды презентации

Слайд 2 Основные методы получения объемных материалов

Основные методы получения объемных материалов

Слайд 3 I. Облучение потоками высокоэнергетических частиц
Радиационно-пучковые технологии. Ионно-лучевые,

I. Облучение потоками высокоэнергетических частиц Радиационно-пучковые технологии. Ионно-лучевые, ионно-плазменные технологии и

ионно-плазменные технологии и воздействие концентрац. потоков энергии для модификации

материалов.
Физико-химические процессы при взаимодействии ионов с твердым телом. Методы получения и транспортировки пучков заряженных частиц.
Имплантация ионов в металлы и полупроводники
Электронные пучки и их применение
Мощные ионные пучки и их применение
Потоки высокотемпературной импульсной плазмы и их применение
Лазерное излучение и его применение
II.Пленочные технологии.
CVD – химическое осаждение
PVD – физическое осаждение
Электроосаждение



Слайд 4 Радиационное воздействие м.б. использовано для модифицирования и создания

Радиационное воздействие м.б. использовано для модифицирования и создания новых материалов.Радиационная обработка

новых материалов.
Радиационная обработка включает следующие задачи:
Техника для обработки: создающая

потоки ионов, атомов, электронов, плазмы и т.д.
Методы обработки: имплантация, распыление, осаждение, перемешивание, нагрев, деформирование, насыщение и др.
Регулируемые параметры при обработке: токи, потоки, флюенсы, энергия и вид излучения, масса частиц, температура облучения.
Технологические задачи: изменение топографии поверхности, активация поверхности, изменение структуры или химического состава, нанесение или удаление слоя, залечивание дефектов
Результат обработки, изменение шероховатости, глубина слоя, структура, состав и фазовое состояние слоев.
Эксплуатационные свойства созданные обработкой: износостойкость, коррозионная стойкость, прочность, твердость, термостойкость и др.


Слайд 5 Механизм воздействия
A
Ионный пучок
Охлаждение за счет теплопроводности

Пробег
ионов

Модифицирование
плазма
Дефектообразование

Механизм воздействияAИонный пучокОхлаждение за счет теплопроводностиПробегионовМодифицированиеплазмаДефектообразование

Слайд 6 Воздействие пучков
Металлическая
мишень
Металлические ионы
Твердые растворы
НАНОРАЗМЕРНЫЕ ФАЗЫ
Интерметаллиды, оксиды, карбиды
Мишень
Модифицированный
слой

Воздействие пучковМеталлическаямишеньМеталлические ионыТвердые растворыНАНОРАЗМЕРНЫЕ ФАЗЫ Интерметаллиды, оксиды, карбидыМишеньМодифицированныйслой

Слайд 7 Радиационно-пучковые технологии используют тепловую, кинетическую, электрическую и магнитную

Радиационно-пучковые технологии используют тепловую, кинетическую, электрическую и магнитную составляющую энергии и

составляющую энергии и различные способы подвода к мишени: непрерывный,

импульсный, импульсно-периодический, точечный, линейный, поверхностный, квазиобъемный.

Модификация осуществляется за счет физических процессов:
Быстрый нагрев и охлаждение
Имплантация атомов/ионов в материал
Распыление или испарение поверхностного слоя
Плазмообразование на поверхности
Дефектоообразование в слое материала
Осаждение атомов на поверхность
Ионное перемешивание в поверхностном слое
Термическая и радиационно-стимулированная диффузия
Термические и структурные напряжения

Слайд 8 При модифицировании происходят различные структурные и фазовые изменения.
Наиболее

При модифицировании происходят различные структурные и фазовые изменения.Наиболее значимыми изменениями являются:Увеличение

значимыми изменениями являются:
Увеличение параметра решетки
Разворот плоскостей упаковки атомов
Образование аморфных

и ультрадисперсных фаз
Диспергирование микроструткуры
Накопление радиационных дефектов
Загрязнение примесями
Растворение и образование радиационно-стимулированных фаз
Расслоение твердых растворов
Создание пересыщенных твердых растворов
Радиационно-индуцированная сегрегация
Образование слоистых структур
Формирование дислокационных субструткур
Образование градиентных структурно-фазовых состояний



Слайд 9 Виды радиационных технологий
По носителям энергии и с учетом

Виды радиационных технологийПо носителям энергии и с учетом основного модифицирующего фактора1

основного модифицирующего фактора
1 Ионно-пучковые технологии
моноэнергетические пучки ионов
полиэнергетические пучки ионов
2

Ионно-плазменные технологии
3 Плазменные технологии
равновесная плазма
неравновесная плазма
4 Технологии, основанные на использовании концентрированных потоков энергии




Слайд 10 Виды облучения
Ионные пучки
Ускоренные ионы (и атомы) в виде

Виды облученияИонные пучкиУскоренные ионы (и атомы) в виде моноэнергетических или полиэнергетических

моноэнергетических или полиэнергетических пучков являются рабочим телом ионно-пучковых и

ионно- плазменных технологий
Используют ионы газовые или твердотельные (металлические)
Параметрами являются: энергия, поток, флюенс
Ионно-пучковые технологии направлены на
1) получение новых материалов: нанесение пленок путем распыления, бомбардировка подложки в процессе нанесения, имплантация в объем материала для создания нового, ионно-пучковая эпитаксия
2) модифицирование материалов (поверхностного слоя): формирование рельефа путем распыления, изменение структуры путем имплантации, изменение элементного и фазового состава.





Слайд 11 Низкотемпературная плазма
Низкотемпературная плазма (Т~ 104 К) может быть

Низкотемпературная плазмаНизкотемпературная плазма (Т~ 104 К) может быть равновесной (Те Тi

равновесной (Те Тi Ta) или неравновесной (Те Тi Ta),

где Те , Тi , Ta температуры атомов, ионов и электронов соответственно.
Перенос вещества в плазме осуществляется путем диффузии, направленных потоков атомов под действием градиентов температуры. Рабочим телом плазмы является (Ar, He, H2, O2, N2) и воздух.
Направления:
1)Получение/синтез материалов: химический синтез (в том числе органический) веществ, полимеризация мономеров; экстрактивная металлургия, включая восстановление оксидов (или их диссоциацию) металлов в плазме и других газовых смесей; получение ультрадисперсных порошков; плазменная плавка металлов
2) Модификация материалов: формирование заданного рельефа (травление или очистка); нанесение покрытий на изделия; синтез химических соединений на поверхности; плазмохимическое насыщение поверхностного слоя азотом, углерода.


Слайд 12 Ионно-плазменные технологии
Одновременная или последовательная обработка поверхности ионами и

Ионно-плазменные технологииОдновременная или последовательная обработка поверхности ионами и плазмой. Использование ионно-плазменных

плазмой.
Использование ионно-плазменных технологий расширяет возможности обработки по сравнению

с ионно-пучковыми технологиями так как позволяет чередовать операции распыления, нанесения покрытий и имплантацию ионов.
Эффективна для получения функциональных покрытий и пленок. Осуществляется ряд операция необходимых для получения прочного сцепления с поверхностью, путем комбинации очистки, напыления ионного перемешивания.



  • Имя файла: poluchenie-obemnyh-nanomaterialov.pptx
  • Количество просмотров: 229
  • Количество скачиваний: 0