Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Работа газа при его расширении

(1)Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде (рис. 1). Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние
Лекция 17 Тема: Работа газа при его расширении. Внутренняя энергия и (1)Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом Произведенную при том или ином процессе работу можно изобразить графически Единила удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг ⋅ К)).Молярная теплоемкость—величина, т. е. молярная теплоемкость газа при постоянном объеме СV равна изменению внутренней При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Расхождение теории и эксперимента нетрудно объяснить. Дело в том, что при
Слайды презентации

Слайд 2 (1)
Для рассмотрения конкретных процессов найдем в общем виде

(1)Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую

внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим,

например, газ, находящийся под поршнем в цилиндрическом сосуде (рис. 1). Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

Рисунок 2

где - площадь поршня, - изменение объема системы. Таким образом,

Полную работу А, совершаемую газом при изменении его объема от до , найдем интегрированием формулы (2):

(2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

Произведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах р, V. Пусть изменение давления газа при его расширении изображается кривой на рис. 3. При увеличении объема на dV совершаемая газом работа равна pdV, т. е. определяется площадью полоски с основанием dV, заштрихованной на рисунке.2.

Рисунок 1


Слайд 3



Произведенную при том или

Произведенную при том или ином процессе работу можно изобразить

ином процессе работу можно изобразить графически с помощью кривой

в координатах р, V. Пусть изменение давления газа при его расширении изображается кривой на рис. 2. При увеличении объема на dV совершаемая газом работа равна pdV, т. е. определяется площадью полоски с основанием dV, заштрихованной на рисунке. Поэтому полная работа, совершаемая газом при расшире­нии от объема V1 до объема V2, определяется площадью, ограниченной осью абсцисс, кривой p=f(V) и прямыми V1 и V2.
Графически можно изображать только равновесные процессы — процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев неравновесностью реальных процессов можно пренебречь (чем медлен­нее процесс протекает, тем он ближе к равновесному). В дальнейшем рассматриваемые процессы будем считать равновесными.

Удельная теплоемкость вещества — величина, равная количеству теплоты, необходи­мому для нагревания 1 кг вещества на 1 К:



(


Слайд 4
Единила удельной теплоемкости — джоуль на килограмм-кельвин

Единила удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг ⋅ К)).Молярная

(Дж/(кг ⋅ К)).
Молярная теплоемкость—величина, равная количеству теплоты, необходимому для

нагревания 1 моль вещества на 1 К:

где ν=m/М—количество вещества.

(3)

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль ⋅ К)).
Удельная теплоемкость с связана с молярной Сm, соотношением


где М — молярная масса вещества.
Различают теплоемкости при постоянном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается постоянным.

(4)

Запишем выражение первого начала термодинамики ( ) для 1 моль газа с учетом формул ( 1) и (3):


Если газ нагревается при постоянном объеме, то работа внешних сил равна нулю (1) и сообщаемая газу извне теплота вдет только на увеличение его внутренней энергии:

(6)

(5 )


Слайд 5 т. е. молярная теплоемкость газа при постоянном объеме

т. е. молярная теплоемкость газа при постоянном объеме СV равна изменению

СV равна изменению внутренней энергии 1 моль газа при

повышении его температуры на 1 К. Согласно формуле ( ),

тогда

(7 )
Если газ нагревается при постоянном давлении, то выражение (5) можно записать в виде

Учитывая, что

не зависит от вида процесса (внутренняя энергия идеального

(8)

газа не зависит ни от p, ни от V, а определяется лишь температурой Т) и всегда равна СV (3), и дифференцируя уравнение Клапейрона — Менделеева pVm=RT по T (p=const), получаем

Выражение (8) называется уравнением Майера; оно показывает, что Ср всегда больше СV на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа. Использовав (7), выражение (8) можно записать в виде

(9)


Слайд 6
При рассмотрении термодинамических процессов важно знать характерное

При рассмотрении термодинамических процессов важно знать характерное для каждого газа

для каждого газа отношение Сp к СV :

(10)
Из формул

(7) и (9) следует, что молярные теплоемкости определяются лишь числом степеней свободы и не зависят от температуры. Это утверждение молекулярно-кинетической теории справедливо в довольно широком интервале температур лишь для одноатомных газов. Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры. Молекула двухатомного газа обладает тремя поступательными, двумя вращательными и одной колебательной степенями свободы.
По закону равномерного распределения энергии по степеням свободы, для комнатных температур СV = 7/2 R. Из качественной экспериментальной зависимости молярной теплоемкости СV водорода (рис. 3) следует, что СV зависит от температуры: при низкой температуре (≈50 К) СV =3/2 R, при комнатной — CV = 5/2R (вместо расчетных 7/2R) и при очень высокой — Сv=7/2 R. Это можно объяснить, предположив, что при низких температурах наблюдается только поступательное движение молекул, при комнатных — добавляется их вращение, а при высоких — к этим двум видам движения добавляются еще колебания молекул.

Рисунок 3


  • Имя файла: rabota-gaza-pri-ego-rasshirenii.pptx
  • Количество просмотров: 125
  • Количество скачиваний: 0