χ⋅[ 1 – cos (α⋅ξ) ], p(ξ) = [q(ξ)
]2 . При этом диэлектрическая проницаемость плазмы определяется выражением
εef(ξ) = [ p(ξ) ]2 – p(ξ)0.5 d2 [ 1 / p(ξ)0.5 ] / dξ2 c параметрами χ , b , α = 2πn / b. Для безразмерной амплитуды волны имеем формулу A(ξ) = 1 / [p(ξ)]1/2 . Следова-тельно, в неоднородном слое 0 ≤ ξ ≤ b выполняется условие p2 > 0. Важно отме-тить, что в данном случае на границах слоя величина p равна вакуумному значе-нию 1 и поскольку производные волнового вектора pξ(0) = pξ(b) = 0 возможна сшивка безотражательного решения с падающей на слой слева и уходящей от него справа волнами, а χ , b , α являются свободными параметрами задачи, n целое число. При выборе параметров χ = - 0.4, b = 20, n = 1 получаем вариант плазмы без внешнего магнитного поля, а графики пространственных профилей диэлектрической проницаемости ε(ξ), волнового числа p(ξ), амплитуды A(ξ) и безразмерной плотности плазмы v(ξ) = 1 - ε(ξ) имеют вид, представленный на рис.1. Как видим из рис.1, профиль диэлектрической проницаемости включает и слои непрозрачности, в которых ε(ξ) < 0. Усиление амплитуды волны в неоднородном слое равно 5, при этом минимальное значение волнового числа min р = 0.04, профиль плотности плазмы v(ξ) является двухгорбым.