Слайд 2
Шкала электромагнитных излучений.
Шкала электромагнитных волн простирается от длинных
Радиоволн до гамма – лучей. Электромагнитные волны различной
Длины
условно делят на диапазоны по различным признакам
( способу получения, способу регистрации, характеру взаимодействия
с веществом).
Слайд 4
Электромагнитные излучения
1.Гамма излучение
2. Инфракрасный диапазон
3. Рентген
4. Радио излучение
и микроволны
5.Видимый диапазон
6. Ультрафиолет
Слайд 6
Гамма-излучение
В области открытия гамма-лучей одно из первых
мест принадлежит англичанину Эрнесту Резерфорду.
Резерфорд задался целью не просто
открывать новые излучающие вещества. Он хотел выяснить, что же представляют собой их лучи. Он правильно предположил, что в этих лучах могут встретиться заряженные частицы. А они отклоняются в магнитном поле. В 1898 году Резерфорд преступил к исследованию уранового излучения, результаты которого были опубликованы в 1899 году в статье «Излучение урана и созданная им электропроводность». Резерфорд пропустил сильный пучок лучей радия между полюсами мощного магнита. И его предположения оправдались.
Слайд 7
Излучение регистрировалось по действию на фотопластинку. Пока не
было магнитного поля, на пластинке появилось одно пятно от
падавших на нее лучей радия. Но вот пучок прошел через магнитное поле. Теперь он как бы распался на части. Один луч отклонился влево, другой – вправо.
Отклонение лучей в магнитном поле ясно указало, что в состав излучения входят заряженные частицы; по этому отклонению можно было судить и о знаке частиц. По двум первым буквам греческого алфавита и назвал Резерфорд две составные части излучения радиоактивных веществ. Альфа-лучи (α) – часть излучения, отклонявшаяся, как отклонялись бы положительные частицы. Отрицательные частицы были обозначены буквой бета (β). А в 1900 году в излучении урана Вилларом была открыта еще одна составляющая, которая не отклонялась в магнитном поле и обладала наибольшей проникающей способностью, она была названа гамма-лучами (γ). Это, как оказалось, были «частицы» электромагнитного излучения – так называемые гамма- кванты.
Гамма-излучение, коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жёстким рентгеновским излучением, занимая весь диапазон частот ν>3*1020 Гц, что соответствует длинам волн λ <10-12 м и вследствие этого обладает ярко выраженными корпускулярными свойствами, т. е. ведёт себя подобно потоку частиц - гамма-квантов, или фотонов.
Слайд 8
Гамма-излучение возникает при распадах радиоактивных ядер, элементарных частиц,
при аннигиляции пар частица-античастица, а также при прохождении быстрых
заряженных частиц через вещество.Гамма-излучение, сопровождающее распад радиоактивных ядер, испускается при переходах ядра из более возбуждённого энергетического состояния в менее возбуждённое или в основное. Испускание ядром гамма-кванта не влечёт за собой изменения атомного номера или массового числа, в отличие от др. видов радиоактивных превращений. Ширина линий гамма-излучение обычно чрезвычайно мала (~10-2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучений является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбуждённых состояний ядер.
Слайд 9
Источником гамма-излучения является изменение энергетического состояния атомного ядра,
а также ускорение свободно заряженных частиц.Гамма-кванты с большими энергиями
испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося p°-мезона возникает гамма-излучение с энергией ~70 Мэв. гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми со скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучение оказывается размытым в широком интервале энергии.
Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле атомных ядер вещества. Тормозное гамма-излучение, так же как и тормозное рентгеновское излучение, характеризуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В межзвёздном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого длинноволнового электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передаёт свою энергию электромагнитному излучению и видимый свет превращается в более жёсткое гамма-излучение. Аналогичное явление может иметь место в земных условиях при столкновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передаёт энергию световому фотону, который превращается в гамма-квант. Можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.
Слайд 10
Гамма-излучение обладает большой проникающей способностью, т. е. может
проникать сквозь большие толщи вещества без заметного ослабления. Оно
проходит сквозь метровый слой бетона и слой свинца толщиной несколько сантиметров.
Слайд 11
Основные процессы, происходящие при взаимодействии гамма-излучения с веществом:
фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар
электрон-позитрон. При фотоэффекте происходит поглощение гамма-кванта одним из электронов атома, причём энергия гамма-кванта преобразуется за вычетом энергии связи электрона в атоме в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна 5-й степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения.
При комптон-эффекте происходит рассеяние g-кванта на одном из электронов, слабо связанных в атоме, В отличие от фотоэффекта, при комптон-эффекте гамма-квант не исчезает, а лишь изменяет энергию (длину волны) и направление распространения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1 см3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышающих энергию связи электронов в атомах.Если энергия гамма-кванта превышает 1,02 Мэв, становится возможным процесс образования электрон-позитронных пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hv. Поэтому при hv ~ 10 основным процессом в любом веществе оказывается образование пар. Обратный процесс аннигиляции электрон-позитронной пары является источником гамма-излучения.
Почти все γ-излучение, приходящие на Землю из космос, поглощается атмосферой Земли. Это обеспечивает возможность существования органической жизни на Земле. γ-Излучение возникает при взрыве ядерного оружия вследствие радиоактивного распада ядер.
Слайд 12
Гамма-излучение находит применение в технике, например для обнаружения
дефектов в металлических деталях – гамма-дефектоскопия. В радиационной химии
гамма-излучение применяется для инициирования химических превращений, например процессов полимеризации. Гамма-излучение используется в пищевой промышленности для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители.
Действие на организм гамма-излучения подобно действию других видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния гамма-излучения зависит от энергии γ-квантов и пространственных особенностей облучения, например, внешнее или внутреннее. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков ) и растений.
Слайд 13
Инфракрасный
диапазон
Возникновение
И
Земное применение
Слайд 14
Уильям Гершель впервые заметил, что за красным
краем полученного с помощью призмы спектра Солнца есть невидимое
излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.
Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.
В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.
Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.
Слайд 15
Источники
В инфракрасном диапазоне телескоп «Хаббл» может увидеть
больше галактик, чем звезд-
Фрагмент одного из так называемых Глубоких
полей «Хаббла». В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.
Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов — это галактики на разных стадиях эволюции.
Слайд 16
Галактика Сомбреро в инфракрасном диапазоне
Гигантская спиральная галактика, обозначаемая
также как M104, расположена в скоплении галактик в созвездии
Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд — в 2-3 раза больше, чем Млечный Путь.
В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.
Слайд 17
Туманности и пылевые облака вблизи центра Галактики в
ИК-диапазоне
Слайд 18
Приемники
Инфракрасный космический телескоп «Спитцер»
Главное зеркало диаметром 85 см
изготовлено из бериллия и охлаждается до температуры 5,5 К
для снижения собственного инфракрасного излучения зеркала.
Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA, включающей:
гамма-обсерваторию «Комптон» (1991–2000, 20 кэВ—30 ГэВ), см. Небо в гамма-лучах с энергией 100 МэВ,
рентгеновскую обсерваторию «Чандра» (1999, 100 эВ—10 кэВ),
космический телескоп «Хаббл» (1990, 100–2100 нм),
инфракрасный телескоп «Спитцер» (2003, 3–180 мкм).
Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».
Слайд 19
.
Земное применение:
Прибор ночного видения
В основе прибора лежит электронно-оптический
преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч
раз) усиливать слабый видимый или инфракрасный свет.
Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ, выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.
Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм).
Слайд 20
Существуют также приборы, которые улавливают собственное тепловое излучение
предметов в среднем ИК-диапазоне (8–14 мкм). Такие приборы называются
тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.
Слайд 21
.
Радиатор
Вся энергия, потребляемая электрическим обогревателем, в конечном счете,
переходит в тепло. Значительная часть тепла уносится воздухом, который
соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.
Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.
Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.
Слайд 22
1.
Рентген
Источники , Применение
Слайд 23
2.
Выделив новый тип изучения, Вильгельм Рентген назвал его
X-лучами (X-rays). Под этим именем оно известно во всём
мире, кроме России.
Самый характерный источник рентгена в космосе — горячие внутренние области аккреционных дисков вокруг нейтронных звезд и черных дыр. Также в рентгеновском диапазоне светит солнечная корона, разогретая до 1–2 млн градусов, хотя на поверхности Солнца всего около 6 тысяч градусов.
Но рентген можно получить и без экстремальных температур. В излучающей трубке медицинского рентгеновского аппарата электроны разгоняются напряжением в несколько киловольт и врезаются в металлический экран, испуская при торможении рентген. Ткани организма по-разному поглощают рентгеновское излучение, это позволяет изучать строение внутренних органов.
Сквозь атмосферу рентген не проникает, космические рентгеновские источники наблюдают только с орбиты. Жесткий рентген регистрируют сцинтилляционными датчиками. При поглощении рентгеновских квантов в них ненадолго возникает свечение, которое улавливают ФЭУ. Мягкое рентгеновское излучение фокусируют металлическими зеркалами косого падения, от которых лучи отражаются под углом менее одного градуса, подобно гальке от поверхности воды.
Слайд 24
Источники
Рентгеновские источники в районе центра нашей Галактики
Фрагмент снимка
окрестностей центра Галактики, полученного рентгеновским телескопом «Чандра». Виден целый
ряд ярких источников, которые, по всей видимости, являются аккреционными дисками вокруг компактных объектов — нейтронных звезд и черных дыр.
Слайд 25
Окрестности пульсара в Крабовидной туманности
Крабовидная туманность — остаток
сверхновой звезды, вспышка которой наблюдалась в 1054 году. Сама
туманность — это рассеянная в космосе оболочка звезды, а ее ядро сжалось и образовало сверхплотную вращающуюся нейтронную звезду диаметром около 20 км.
Вращение этой нейтронной звезды отслеживается по строго периодическим колебаниям ее излучения в радиодиапазоне. Но пульсар излучает также в видимом и рентгеновском диапазонах. В рентгене телескоп «Чандра» сумел получить изображение аккреционного диска вокруг пульсара и небольших джетов, перпендикулярных его плоскости (ср. Аккреционный диск вокруг сверхмассивной черной дыры).
Слайд 26
Солнечные протуберанцы в рентгене
Видимая поверхность Солнца разогрета примерно
до 6 тысяч градусов, что соответствует видимому диапазону излучения.
Однако корона, окружающая Солнце, разогрета до температуры более миллиона градусов и потому светится в рентгеновском диапазоне спектра.
Данный снимок сделан во время максимума солнечной активности, которая меняется с периодом 11 лет. Сама поверхность Солнца в рентгене практически не излучает и потому выглядит черной. В период солнечного минимума рентгеновское излучение Солнца значительно снижается. Изображение получено японским спутником Yohkoh («Солнечный луч»), известным также как Solar-A, который работал с 1991 по 2001 год.
Слайд 27
Приемники
Рентгеновский телескоп «Чандра»
Одна из четырех «Великих обсерваторий» NASA,
получившая название в честь американского астрофизика индийского происхождения Субраманьяна
Чандрасекара (1910–95), лауреата Нобелевской премии (1983), специалиста по теории строения и эволюции звезд.
Основной инструмент обсерватории — рентгеновский телескоп косого падения диаметром 1,2 м, содержащий четыре вложенных параболических зеркала косого падения (см. схему), переходящих в гиперболические. Обсерватория выведена на орбиту в 1999 и работает в диапазоне мягкого рентгена (100 эВ—10 кэВ). Среди множества открытий обсерватории «Чандра» — первый снимок аккреционного диска вокруг пульсара в Крабовидной туманности.
Слайд 28
Земное применение
Электронная лампа, служащая источником мягкого рентгеновского излучения.
Между двумя электродами внутри запаянной вакуумной колбы прикладывается напряжение
10–100 кВ. Под действием этого напряжения электроны разгоняются до энергии 10–100 кэВ. В конце пути они сталкиваются с полированной металлической поверхностью и резко тормозятся, отдавая значительную часть энергии в виде излучения в рентгеновском и ультрафиолетовом диапазоне.
Слайд 29
Рентгеновский снимок
Изображение получается за счет неодинаковой проницаемости тканей
человеческого тела для рентгеновского излучения. В обычном фотоаппарате объектив
преломляет свет, отраженный объектом, и фокусирует его на пленке, где формируется изображение.
Однако рентгеновское излучение очень трудно сфокусировать. Поэтому работа рентгеновского аппарата больше похожа на контактную печать снимка, когда негатив кладется на фотобумагу и на короткое время освещается. Только в данном случае в роли негатива выступает человеческое тело, в роли фотобумаги специальная фотопленка, чувствительная к рентгеновским лучам, а вместо источника освещения берется рентгеновская трубка.
Слайд 30
Радиоизлучение и микроволны
Применение
Слайд 31
Радиоизлучение и микроволны
Диапазон радиоизлучения противоположен гамма-излучению и тоже
неограничен с одной стороны — со стороны длинных волн
и низких частот.
Инженеры делят его на множество участков. Самые короткие радиоволны используют для беспроводной передачи данных (интернет, сотовая и спутниковая телефония); метровые, дециметровые и ультракороткие волны (УКВ) занимают местные теле- и радиостанции; короткие волны (КВ) служат для глобальной радиосвязи — они отражаются от ионосферы и могут огибать Землю; средние и длинные волны используют для регионального радиовещания. Сверхдлинные волны (СДВ) — от 1 км до тысяч километров — проникают сквозь соленую воду и применяются для связи с подводными лодками, а также для поиска полезных ископаемых.
Энергия радиоволн крайне низка, но они возбуждают слабые колебания электронов в металлической антенне. Эти колебания затем усиливаются и регистрируются.
Атмосфера пропускает радиоволны длиной от 1 мм до 30 м. Они позволяют наблюдать ядра галактик, нейтронные звезды, другие планетные системы, но самое впечатляющее достижение радиоастрономии — рекордно детальные изображения космических источников, разрешение которых превосходит десятитысячную долю угловой секунды.
Слайд 32
Микроволны
Микроволны — это поддиапазон радиоизлучения, примыкающий к инфракрасному.
Его также называют сверхвысокочастотным (СВЧ) излучением, так как у
него самая большая частота в радиодиапазоне.
Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название — микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.
Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.
А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.
Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.
Слайд 33
Источники
Крабовидная туманность в радиодиапазоне
По этому изображению, которое
построено по данным наблюдений американской Национальной радиоастрономической обсерватории (NRAO),
можно судить о характере магнитных полей в Крабовидной туманности.
Крабовидная туманность — наиболее изученный остаток взрыва сверхновой. На данном изображении показано, как она выглядит в радиодиапазоне.
Радиоизлучение генерируется быстрыми электронами при движении в магнитном поле. Поле заставляет электроны поворачивать, то есть двигаться ускоренно, а при ускоренном движении заряды испускают электромагнитные волны.
Слайд 34
Компьютерная модель распределения вещества во Вселенной
Изначально распределение вещества
во Вселенной было почти идеально равномерным. Но все же
небольшие (возможно даже квантовые) флуктуации плотности за многие миллионы и миллиарды лет привели к тому, что вещество фрагментировалось.
Похожие результаты дают наблюдательные обзоры распределения галактик в пространстве. Для сотен тысяч галактик определяются координаты на небе и красные смещения, по которым вычисляются расстояния до галактик.
На рисунке представлен результат компьютерного моделирования эволюции Вселенной. Рассчитывалось движение 10 млрд частиц под действием взаимного тяготения на протяжении 15 млрд лет. В результате сформировалась пористая структура, отдаленно напоминающая губку. Скопления-галактики концентрируются в ее узлах и ребрах, а между ними находятся обширные пустыни, где почти нет объектов, — астрономы называют их войдами (от англ. void — пустота).
Слайд 35
Правда, достичь хорошего согласия расчетов и наблюдений удается,
только если предположить, что видимое (светящееся в электромагнитном спектре)
вещество составляет всего около 5% всей массы Вселенной. Остальное приходится на так называемые темную материю и темную энергию, которые проявляют себя только своим тяготением и природа которых пока не установлена. Их изучение — одна из наиболее актуальных задач современной астрофизики.
Слайд 36
Квазар: активное ядро галактики
На радиоизображении квазара красным цветом
показаны области высокой интенсивности радиоизлучения: в центре активное ядро
галактики, а по бокам от него — два джета. Сама галактика в радиодиапазоне практически не излучает.
Когда на сверхмассивную черную дыру в центре галактики аккрецирует слишком много вещества, выделяется огромное количество энергии.
Эта энергия разгоняет часть вещества до околосветовых скоростей и выбрасывает его релятивистскими плазменными джетами в двух противоположных направлениях перпендикулярно оси аккреционного диска. Когда эти джеты сталкиваются с межгалактической средой и тормозятся, входящие в них частицы испускают радиоволны.
Слайд 37
Радиогалактика: карта изолиний радиояркости
Карты изолиний обычно используются для
представления изображений, полученных на одной длине волны, что особенно
характерно для радиодиапазона. По принципу построения они подобны горизонталям на топографической карте, только вместо точек с фиксированной высотой над горизонтом ими соединяют точки с одинаковой радиояркостью источника на небе.
Для изображения космических объектов в диапазонах излучения, отличных от видимого, используются различные приемы. Чаще всего это искусственные цвета и карты изолиний.
С помощью искусственных цветов можно показать, как выглядел бы объект, если бы светочувствительные рецепторы человеческого глаза были чувствительны не к определенным цветам в видимом диапазоне, а к другим частотам электромагнитного спектра.
Слайд 38
Приемники
Микроволновый орбитальный зонд WMAP
Изучение микроволнового фона было начато
наземными радиотелескопами, продолжено советским прибором «Реликт-1» на борту спутника
«Прогноз-9» в 1983 г. и американским спутником COBE (Cosmic Background Explorer) в 1989 г., но самую подробную карту распределения микроволнового фона по небесной сфере построил в 2003 г. зонд WMAP (Wilkinson Microwave Anisotropy Probe).
Полученные данные накладывают существенные ограничения на модели образования галактик и эволюции Вселенной.
Космический фон микроволнового излучения, называемый также реликтовым излучением, создает радиошум, который почти одинаков во всех направлениях на небе. И всё же в нем есть очень небольшие вариации интенсивности — около тысячной доли процента. Это следы неоднородностей плотности вещества в молодой Вселенной, которые послужили зародышами для будущих скоплений галактик.
Слайд 39
Обзоры неба
Энергия невозбужденного атома водорода зависит от взаимной
ориентации спинов протона и электрона. Если они параллельны, энергия
чуть выше. Такие атомы могут спонтанно переходить в состояние с антипараллельными спинами, испуская квант радиоизлучения, уносящий крохотный избыток энергии. С отдельным атомом такое случается в среднем раз в 11 млн лет. Но огромное распространение водорода во Вселенной делает возможным наблюдение газовых облаков на этой частоте.
Знаменитая спектральная линия с длиной волны 21,1 см — это еще один способ наблюдения нейтрального атомарного водорода в космосе. Линия возникает благодаря так называемому сверхтонкому расщеплению основного энергетического уровня атома водорода.
Слайд 40
Радионебо на волне 73,5 см, 408 МГц (Бонн)
Для построения обзора использовался один из крупнейших в мире
полноповоротных радиотелескопов — 100-метровый боннский радиотелескоп.
Это самый длинноволновый из всех обзоров неба. Он был выполнен на волне, на которой в Галактике наблюдается значительное число источников. Кроме того, выбор длины волны определялся техническими причинами.
Слайд 41
Земное применение
Микроволновая печь
Таким образом происходит
микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также
переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.
А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).
Главное преимущество микроволновой печи — прогрев со временем продуктов по всему объему, а не только с поверхности.
Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи.
Слайд 42
Сотовый телефон
В стандарте GSM одна базовая станция может
обеспечивать не более 8 телефонных разговоров одновременно. На массовых
мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно
доставлены в район большого скопления народа.
Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.
Принцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.
Радиус действия базовой станции — размер соты — от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.
Слайд 43
Телевизор
Передатчик телевизионной станции постоянно выдает в эфир радиосигнал
строго фиксированной частоты, она называется несущей частотой. Под нее
подстраивается приемный контур телевизора — в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда — высокая яркость, низкая амплитуда — темный участок изображения.
Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).
С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.
Передача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.
Слайд 44
Спутниковая тарелка
Параболическая антенна для приема сигнала с геостационарного
спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же,
как у радиотелескопа, но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.
Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд — 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50–100 см, и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2–3 м.
Слайд 45
Видимый диапазон
Земное применение
Слайд 46
Видимый диапазон
Диапазон видимого света — самый узкий во
всем спектре. Длина волны в нем меняется менее чем
в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Почти все астрономические наблюдения до середины XX века велись в видимом свете. Основной источник видимого света в космосе — звезды, поверхность которых нагрета до нескольких тысяч градусов и потому испускает свет. На Земле применяются также нетепловые источники света, например, флюоресцентные лампы и полупроводниковые светодиоды.
Для сбора света от слабых космических источников используются зеркала и линзы. Приемниками видимого света служат сетчатка глаза, фотопленка, применяемые в цифровых фотоаппаратах полупроводниковые кристаллы (ПЗС-матрицы), фотоэлементы и фотоэлектронные умножители. Принцип действия приемников основан на том, что энергии кванта видимого света достаточно, чтобы спровоцировать химическую реакцию в специально подобранном веществе или выбить из вещества свободный электрон. Затем по концентрации продуктов реакции или по величине освободившегося заряда определяется количество поступившего света.
Слайд 47
Источники
Одна из самых ярких комет конца XX века.
Она была открыта в 1995 году, когда находилась еще
за орбитой Юпитера. Это рекордное расстояние для обнаружения новой кометы. Прошла перигелий 1 апреля 1997 года, а в конце мая достигла максимального блеска — около нулевой звездной величины.
Комета Хейла-Боппа
Всего комета оставалась видимой невооруженным глазом в течение 18,5 месяцев — вдвое больше прежнего рекорда, установленного великой кометой 1811 года. На снимке видны два хвоста кометы — пылевой и газовый. Давление солнечного излучения направляет их прочь от Солнца.
Слайд 48
Планета Сатурн
Вторая по величине планета Солнечной системы. Относится
к классу газовых гигантов. Снимок сделан межпланетной станцией «Кассини»,
которая с 2004 года ведет исследования в системе Сатурна. В конце XX века системы колец обнаружены у всех планет-гигантов — от Юпитера до Нептуна, но только у Сатурна они легко доступны наблюдению даже в небольшой любительский телескоп.
Слайд 49
Солнечные пятна
Они живут от нескольких часов до нескольких
месяцев. Число пятен служит индикатором активности Солнца. Наблюдая пятна
на протяжении нескольких дней, легко заметить вращение Солнца. Снимок сделан любительским телескопом.
Области пониженной температуры на видимой поверхности Солнца. Их температура 4300–4800 К — примерно на полторы тысячи градусов ниже, чем на остальной поверхности Солнца. Из-за этого их яркость в 2–4 раза ниже, что по контрасту создает впечатление черных пятен. Пятна возникают, когда магнитное поле замедляет конвекцию и тем самым вынос тепла в верхних слоях вещества Солнца.
Слайд 50
Приемники
Любительский телескоп
В современном мире любительская астрономия стала увлекательным
и престижным хобби.Простейшие инструменты с диаметром объектива от 50–70
мм, самые крупные с диаметром 350–400 мм сравнимы по стоимости с престижным автомобилем и требуют стационарной установки на бетонном фундаменте под куполом. В умелых руках такие инструменты вполне могут дать вклад в большую науку.
Слайд 51
Лампа накаливания
Испускает видимый свет и инфракрасное излучение за
счет нагрева электрическим током помещенной в вакуум вольфрамовой спирали.
Спектр излучения очень близок к чернотельному с температурой около 2000 К.
При такой температуре максимум излучения приходится на ближнюю инфракрасную область и потому расходуется бесполезно для целей освещения. Существенно поднять температуру не удается, поскольку при этом спираль быстро выходит из строя. Поэтому лампы накаливания оказываются неэкономичным осветительным прибором. Лампы дневного света значительно эффективнее преобразуют электроэнергию в свет.
Слайд 53
Ультрафиолет
Ультафиолетовый диапазон электромагнитного излучения располагается за фиолетовым (коротковолновым)
краем видимого спектра.
Ближний ультрафиолет от Солнца проходит сквозь атмосферу.
Он вызывает на коже загар и необходим для выработки витамина D. Но чрезмерное облучение чревато развитием рака кожи. УФ излучение вредно для глаз. Поэтому на воде и особенно на снегу в горах обязательно нужно носить защитные очки.
Более жесткое УФ излучение поглощают в атмосфере молекулы озона и других газов. Наблюдать его можно только из космоса, и поэтому его называют вакуумным ультрафиолетом.
Энергии ультрафиолетовых квантов достаточно для разрушения биологических молекул, в частности ДНК и белков. На этом основан один из методов уничтожения микробов. Считается, что пока в атмосфере Земли не было озона, поглощающего значительную часть ультрафиолета, жизнь не могла выйти из воды на сушу.
Ультрафиолет испускают объекты с температурой от тысяч до сотен тысяч градусов, например, молодые горячие массивные звезды. Однако УФ излучение поглощается межзвездными газом и пылью, поэтому часто нам видны не сами источники, а подсвеченные ими космические облака.
Для сбора УФ излучения используют зеркальные телескопы, а для регистрирации служат фотоэлектронные умножители, а в ближнем УФ, как и в видимом свете — ПЗС-матрицы.
Слайд 54
Источники
Свечение возникает, когда заряженные частицы солнечного ветра сталкиваются
с молекулами атмосферы Юпитера. Большинство частиц под действием магнитного
поля планеты входит в атмосферу вблизи ее магнитных полюсов. Поэтому сияние возникает в относительно небольшой области. Аналогичные процессы идут на Земле и на других планетах, обладающих атмосферой и магнитным полем. Снимок получен космическим телескопом «Хаббл».
Полярное сияние на Юпитере в ультрафиолете
Слайд 55
Обзоры неба
Небо в жестком ультрафиолете (EUVE)
Обзор построен орбитальной
ультрафиолетовой обсерваторией Extreme Ultraviolet Explorer Линейчатая структура изображения соответствует
орбитальному движению спутника, а неоднородность яркости отдельных полос связана с изменениями в калибровке аппаратуры. Черные полосы — участки неба, которые не удалось пронаблюдать. Незначительное число деталей на этом обзоре связано с тем, что источников жесткого ультрафиолета относительно мало и, кроме того, ультрафиолетовое излучение рассеивается космической пылью.
Слайд 56
Земное применение
Солярий
Установка для дозированного облучения тела ближним ультрафиолетом для
загара. Ультрафиолетовое излучение приводит к выделению в клетках пигмента меланина, который меняет цвет кожи