Слайд 2
Лазерная химико-термическая обработка
включает:
образование активных атомов или ионов насыщаемого элемента;
адсорбцию;
диффузию.
Рациональный режим характеризуется сбалансированностью этих элементарных процессов.
Лазерная цементация
Лазерная цементация может проводиться из газовой среды: пропан – бутан, метан – аргон. Может применяться графитовая обмазка.
При лазерном нагреве чистого железа с оплавлением на поверхности может быть получена структура белого чугуна или аустенит + мартенсит.
Твёрдость поверхности 8680…10650 МПа. Она обладает повышенной красностойкостью до 800˚C (HB=7500-8000 МПа).
Лазерная цементация быстрорежущей стали не приводит к повышению красностойкости. Структуру цементационного слоя можно регулировать за счёт энергии импульса и толщины графитовой обмазки.
Лазерное азотирование
В качестве азотированной среды используется: струя N2 под давлением, NH3 или паста на основе карбамида (CO(NH2)).
При оплавлении в структуре преобладает азотистый мартенсит с высокой твёрдостью.
При лазерном азотировании без оплавления на поверхности образуется неоднородная аустенитная структура.
Слайд 3
Изменение химического состава поверхностного слоя (лазерное легирование)
Способы
ввода элементов в зону лазерного воздействия:
нанесение порошка на поверхность;
-
обмазка поверхности пастой;
- накаливание фольги;
- легирование в жидкой фазе (в воде, глицерине);
- легирование в газовой среде (в стеклянной ёмкости);
- удержание легирующего элемента магнитным полем (ферромагнитные порошки);
- электроискровое нанесение;
- электролитическое покрытие;
- детонационное покрытие.
Недостатки: трудно контролировать глубину, порошок сдувается.
Слайд 4
Лазерная обработка чугунов
Проводится с оплавлением поверхности, приводит к
растворению графита в расплаве, из-за чего образуется отбеленный чугун.
Кристаллизация – при высоких скоростях охлаждения, поэтому в структуре отбеленного чугуна наблюдается выравнивание концентрации кремния. Эта структура – мелкие дендриты или ячейки аустенита, в междендритных промежутках – ледебурит.
Особенность ледебурита – почти полностью состоит из цементита, т.е. кристаллизация осуществляется по механизму, близкому к кввазиэвтектическому.
Высокая твёрдость: 8000-10000 мПа для ВЧ 60;
6000-9450 для ВЧ 50;
7400-9000 для СЧ 24;
6000-8000 для КЧ 35-40.
Слайд 5
Граница между зоной оплавления и зоной термического влияния
в чугунах является неровной из-за «контактного плавления» - пересыщения
углеродом металлической матрицы около графитовых включений и понижения температуры плавления согласно диаграммы Fe – Fe3C.
Степень насыщения углеродом на различных расстояниях от графитовых включений различна. Структура: рядом с графитом слой из цементита, далее пластинчатый ледебурит, ледебурит + аустенит, однородный аустенит и следовательно аустенит + мартенсит игольчатый.
Микротвёрдость слоёв различна:
6400 – 6700 мПа для аустенита и А+М;
10000 – 12000 мПа для цементитной и ледебуритной структуры.
В нижней части зоны температура влияния насыщения матрицы из графита незначительна, структура состоит из мартенсита и аустенита остаточного.
Слайд 6
Особенности фазовых превращений в металлах и сплавах при
лазерной обработке
Быстрый нагрев приводит к получению высокотемпературной фазы с
мелким зерном (сталь не охрупчивается), изменяется механизм фазовых превращений (чаще всего реализуются бездиффузионные превращения).
Бездиффузионному образованию новой фазы присущи особенности:
происходит без изменения состава;
распространяется на широкую область температур (температура начала превращения не зависит от скорости нагрева и охлаждения);
кристаллические решетки превращающихся фаз закономерно ориентированы друг относительно друга.
чаще всего происходит мартенситное превращение. При быстром нагреве сталей образование высокотемпературной фазы аустенита может иметь бездиффузионный характер.
Исходная структура стали оказывает большое влияние на кинетику растворения избыточных фаз в аустените и его гомогенизации. Крупные карбиды могут сохраняться в аустените до самого плавления материала.
при лазерном нагреве растворы после растворения избыточных фаз могут быть чрезвычайно неоднородны по химическому составу.
при очень быстром охлаждении расплавленного металла возможно его переохлаждение без кристаллизации (аморфное состояние (в практике аморфизация нашла широкое применение (высокая прочность, износостойкость).
Слайд 7
Фазовые превращения при лазерной закалке
Механизм образования аустенита при
лазерном нагреве зависит от исходной структуры стали.
Поэтому при
нагреве доэвтектоидных сталей с феррито-перлитной структурой образовывалась неоднородная структура, состоящая из участков высокоуглеродистого мартенсита и участков малоуглеродистого феррита. Эти два типа участков очень сильно различались по твердости. Это различие сохранялось вплоть до температур плавления, по этой причине стали с феррито-перлитной структурой не подвергаются лазерной закалке
Слайд 8
При лазерном нагреве сталей с мартенситной или бейнитной
структурой происходит ориентированное образование аустенита, сопровождающееся воспроизведением величины, формы
и ориентации первоначальных зерен аустенита. Этот эффект структурной наследственности проявляется при лазерном нагреве более широко, чем при обычном нагреве. В связи с этим формируется более однородная структура структура стали и твердость закаленной стали практически одинакова по всей зоне воздействия лазерного пучка.
Слайд 9
Особенности термообработки лазерным лучом
Сосредоточение значительной энергии на малой
площади поверхности, что приводит к нагреву со сверхскоростью 10^6
гр/с;
За счёт большого градиента температур и высокой теплопроводимости металла скорость охлаждения достигает ~ 10^4…10^6 гр/с. В результате происходит автозакалка;
Высокие температурные градиенты способны вызывать образование дефектов (дислокации, вакансии);
Вызывают высокие упругие деформации и связанные с ними напряжения;
Высокие скорости нагрева применяют кинетику фазовых превращений и растворения фаз;
Возможна реализация бездиффузионных превращений при нагреве;
Имеются доказательства того, что превращение протекает сдвиговым путём;
При охлаждении с высокой скоростью исключается протекание самоотпуска мартенсита;
Мартенсит после лазерной термообработки обладает более высокой прочностью и способностью к интенсивному деформационному упрочнению;
Неотпущенный мартенсит проявляет способность к интенсивному закреплению дислокаций растворёнными атомами углерода, в результате – повышение прочности и износостойкости.