число каждой строки равно сумме номеров строк, ей предшествующих.
Третье число каждой строки является треугольным.
Четвертое число каждой строки является тетраэдрическим.
Сумма чисел n-й восходящей диагонали, проведенной через строку треугольника с номером n − 1, есть n-е число Фибоначчи:
Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана.
Сумма чисел n-й строки треугольника Паскаля равна 2 .
Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры.
Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные - в белый, то образуется треугольник Серпинского.
Свойства
n