Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Архитектура и составные части систем искусственного интеллекта

Подходы к построению систем ИИ.Подходы к построению систем ИИ: Логический (булева алгебра) Структурный (моделирование структуры человеческого мозга) Эволюционный (подразумевает развитие базовой модели) Имитационный (имитируемый объект – «чёрный ящик»)
Лекция 2. Архитектура и составные части систем ИИПодходы к построению систем ИИ Подходы к построению систем ИИ.Подходы к построению систем ИИ: Логический (булева алгебра) Подходы к построению систем ИИ. Логический подходОсновой для логического подхода служит Булева Подходы к построению систем ИИ. Логический подходДобиться большей выразительности логическому подходу позволяет Подходы к построению систем ИИ. Структурный подходПод структурным подходом мы подразумеваем попытки построения ИИ Подходы к построению систем ИИ. Эволюционный подходДовольно большое распространение получил и эволюционный подход. Подходы к построению систем ИИ. Имитационный подходЕщё один широко используемый подход к Вспомогательные системы нижнего уровня и их место в системах ИИ.Вспомогательные системы нижнего Для того, чтобы человек сознательно воспринял информацию, она должна пройти довольно длительный Устройства обработки звука позволяют улавливать девиацию голоса человека в 1-2 Герца. Данное Общий вывод этой части лекции состоит в том, что в настоящее время
Слайды презентации

Слайд 2 Подходы к построению систем ИИ.
Подходы к построению систем

Подходы к построению систем ИИ.Подходы к построению систем ИИ: Логический (булева

ИИ:

Логический (булева алгебра)

Структурный (моделирование структуры человеческого мозга)

Эволюционный (подразумевает развитие базовой модели)

Имитационный (имитируемый объект – «чёрный ящик»)


Слайд 3 Подходы к построению систем ИИ. Логический подход
Основой для

Подходы к построению систем ИИ. Логический подходОсновой для логического подхода служит

логического подхода служит Булева алгебра.

Свое дальнейшее развитие Булева алгебра

получила в виде исчисления предикатов — в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности.

Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода - как отношения между ними.

Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем.

Слайд 4 Подходы к построению систем ИИ. Логический подход
Добиться большей

Подходы к построению систем ИИ. Логический подходДобиться большей выразительности логическому подходу

выразительности логическому подходу позволяет такое сравнительно новое направление, как

нечёткая логика.

Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) ещё и промежуточные значения — например, «не знаю» (0.5), «пациент скорее жив, чем мертв» (0.75), «пациент скорее мертв, чем жив» (0.25).

Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет.

Слайд 5 Подходы к построению систем ИИ. Структурный подход
Под структурным подходом мы

Подходы к построению систем ИИ. Структурный подходПод структурным подходом мы подразумеваем попытки построения

подразумеваем попытки построения ИИ путем моделирования структуры человеческого мозга.



Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.

Позднее возникли и другие модели, которые в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.

НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного применения их для построения систем ИИ, это уже ранее упоминавшийся ТАИР.

Слайд 6 Подходы к построению систем ИИ. Эволюционный подход
Довольно большое

Подходы к построению систем ИИ. Эволюционный подходДовольно большое распространение получил и эволюционный

распространение получил и эволюционный подход.

При построении систем ИИ по

данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать).

Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель.

После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

Слайд 7 Подходы к построению систем ИИ. Имитационный подход
Ещё один

Подходы к построению систем ИИ. Имитационный подходЕщё один широко используемый подход

широко используемый подход к построению систем ИИ — имитационный.



Данный подход является классическим для кибернетики с одним из её базовых понятий — "чёрным ящиком" (ЧЯ).

ЧЯ — устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которых отсутствуют полностью, но известны спецификации входных и выходных данных.

Объект, поведение которого имитируется, как раз и представляет собой такой "чёрный ящик". Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же.

Слайд 8 Вспомогательные системы нижнего уровня и их место в

Вспомогательные системы нижнего уровня и их место в системах ИИ.Вспомогательные системы

системах ИИ.
Вспомогательные системы нижнего уровня:

Распознавание образов:

Зрительных

Звуковых

Идентификация

Моделирование

Жёсткое программирование


Слайд 9 Для того, чтобы человек сознательно воспринял информацию, она

Для того, чтобы человек сознательно воспринял информацию, она должна пройти довольно

должна пройти довольно длительный цикл предварительной обработки.

Вначале

свет попадает в глаз. Пройдя через всю оптическую систему фотоны в конце концов попадают на сетчатку — слой светочувствительных клеток — палочек и колбочек.

Уже здесь — еще очень далеко от головного мозга, происходит первый этап обработки информации, поскольку, например, у млекопитающих, сразу за светочувствительными клетками обычно находятся два слоя нервных клеток, которые выполняют сравнительно несложную обработку.

Информация поступает по зрительному нерву в головной мозг человека, в так называемые "зрительные бугры".

Вспомогательные системы нижнего уровня и их место в системах ИИ. Обработка зрительной информации


Слайд 10 Устройства обработки звука позволяют улавливать девиацию голоса человека

Устройства обработки звука позволяют улавливать девиацию голоса человека в 1-2 Герца.

в 1-2 Герца.

Данное изменение частоты происходит при повышенном

возбуждении вегетативной нервной системы, которое в свою очередь часто обусловлено волнением человека.

На данном принципе основаны современные детекторы лжи, которые позволяют обнаружить с высокой вероятностью даже записанные на пленку много лет назад ложные высказывания.

Вспомогательные системы нижнего уровня и их место в системах ИИ. Обработка звуковой информации


  • Имя файла: arhitektura-i-sostavnye-chasti-sistem-iskusstvennogo-intellekta.pptx
  • Количество просмотров: 176
  • Количество скачиваний: 1