Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Системы счисления

Числа и системы счисления Понятие числа является фундаментальным как для математики, так и для информатики. С числами связано еще одно важное понятие —система счисления.Цифры майя
Системы счисления.Подготовила учащаяся 10 классаОсадчая Ксения Числа и системы счисления Понятие числа является фундаментальным как для математики, так Система счисления - это знаковая система, в которой числа записываются по определенным Непозиционные системы счисленияНепозиционными системами пользовались древние египтяне, греки, римляне и некоторые другие На Руси вплоть до XVIII века, использовалась непозиционная система славянских цифр. Буквы Позиционные системы счисления Основание позиционной десятичной системы равно десяти, так как запись любых чисел производится с помощью десяти цифр:0,1,2,3,4,5,6,7,8,9 Перевод чисел из десятичной системы в другие позиционные системыДанное десятичное число делится 1123 = 1 х З2 + 1 х З1 +2 х 3°
Слайды презентации

Слайд 2 Числа и системы счисления
Понятие числа является фундаментальным

Числа и системы счисления Понятие числа является фундаментальным как для математики,

как для математики, так и для информатики.
С числами

связано еще одно важное понятие —система счисления.

Цифры майя


Слайд 3 Система счисления -
это знаковая система, в которой

Система счисления - это знаковая система, в которой числа записываются по

числа записываются по определенным правилам с помощью символов некоторого

алфавита, называемых цифрами.

Системы счисления

Непозиционные

Позиционные


Слайд 5 Непозиционные системы счисления
Непозиционными системами пользовались древние египтяне, греки,

Непозиционные системы счисленияНепозиционными системами пользовались древние египтяне, греки, римляне и некоторые

римляне и некоторые другие народы древности.
До нас дошла римская

система записи чисел (римские цифры), которая в некоторых случаях применяется в нумерации (века, тома в собрании сочинений, главы книги). В римской системе в качестве цифр используются латинские буквы:
I V X L С D М
1 5 10 50 100 500 1000
Например, число ССХХXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.
В римских числах цифры записываются слева направо в порядке убывания.
В таком случае их значения складываются. Если слева записана меньшая цифра, а справа — большая, то их значения вычитаются.
VI = 5 + 1 = 6, а IV = 5 -1 = 4.
МСМХСVII= 1000 + (-100+1000) + (-10 + 100) + 5 + 1 + 1 = 1997.

Слайд 6 На Руси вплоть до XVIII века, использовалась непозиционная

На Руси вплоть до XVIII века, использовалась непозиционная система славянских цифр.

система славянских цифр. Буквы кириллицы (славянского алфавита) имели цифровое

значение, если над ними ставился специальный знак ~ титло. Например А — 1, Д — 4, Р — 100. Интересно, что существовали обозначения очень больших величин. Самая большая величина называлась «колода» и обозначалась знаком А. Это число равно 10 50. Считалось, что «боле сего несть человеческому уму разумевати».

Непозиционные системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.

~

~

~




Слайд 7 Позиционные системы счисления

Позиционные системы счисления

Слайд 8 Основание позиционной десятичной системы равно десяти, так как

Основание позиционной десятичной системы равно десяти, так как запись любых чисел производится с помощью десяти цифр:0,1,2,3,4,5,6,7,8,9

запись любых чисел производится с помощью десяти цифр:
0,1,2,3,4,5,6,7,8,9


Слайд 9 Перевод чисел из десятичной системы в другие позиционные

Перевод чисел из десятичной системы в другие позиционные системыДанное десятичное число

системы
Данное десятичное число делится с остатком на основание системы.

Полученный остаток — это младший разряд искомого числа, а полученное частное снова делится с остатком, который равен второй справа цифре и т.д. Так продолжается до тех пор, пока частное не станет меньше делителя (основания системы). Это частное — старшая цифра искомого числа.
Продемонстрируем этот метод на примере перевода числа 3710 в двоичную систему. Здесь для обозначения цифр в записи числа используется символика: а5а4а3а2а1а0.
Отсюда: 3710 = 1001012


  • Имя файла: sistemy-schisleniya.pptx
  • Количество просмотров: 133
  • Количество скачиваний: 0
Следующая - Find with Judy