FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
Ch. 5-
x
b
μ
a
x
b
μ
a
x
b
μ
a
Any normal distribution, F(x) (with any mean and standard deviation combination) can be transformed into the standardized normal distribution F(z), with mean 0 and standard deviation 1
We say that Z follows the standard normal distribution.
Z
f(Z)
0
1
Copyright ©2015 Pearson Education, Inc.
FIGURE 2.9
– Normal Distribution
DR SUSANNE HANSEN SARAL
Step 2
Look up the probability from the table of normal curve areas
Column on the left is Z value
Row at the top has second decimal places for Z values
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
DR SUSANNE HANSEN SARAL
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
To find the probability of: P (z > 1) and P (z < -1) we will use the complement rule:
P( z > 1.0) = 1 - .8413 = 0.1587
P ( z < + 0.55) = 0.7088 or 70.88 %
P (z > + .55) = 1.0 – 0.7088 = 0.2912 or 29.12%
P ( z > - 0.55) = 0.7088 or 70.88 %
P ( z < - 0.55) = 1.0 - .7088 = 0.2912 or 29.12 %
P ( z < + 1.65) = 0.9505 or 95.05 %
P (z > + 1.65) = 1.0 – 0.9505 = 0.0495 or 4.96 %
P( z > - 2.36) = .9909 or 99.09 %
P ( z < + 2.36) = .9909 or 99.09 %
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
Exercise:
Find the probability of z-scores
and draw a graph of the probability
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
DR SUSANNE HANSEN SARAL
The probability is about 0.89 or 89 %
that Haynes will not violate the contract
DR SUSANNE HANSEN SARAL
Copyright ©2015 Pearson Education, Inc.
FIGURE 2.10
From the table for Z = 1.25
area P(z > 1.25) =
1 – P(z < 1.25) = 1 - 0.8944 =
0.1056 or 10.56 %
P(z > 1.25)
DR SUSANNE HANSEN SARAL
Copyright ©2015 Pearson Education, Inc.
DR SUSANNE HANSEN SARAL
Copyright ©2015 Pearson Education, Inc.
FIGURE 2.11
Because the distribution is symmetrical, equivalent to Z = 1.25
P(z < 1.25) so area = 0.8944
0.8944
DR SUSANNE HANSEN SARAL
FIGURE 2.11
P(z < -1.25) = 1.0 – P(z < 1.25)
= 1.0 – 0.8944 = 0.1056
The probability of completing the contract in 75 days or less is about 11%
Because the distribution is symmetrical, equivalent to Z = 1.25
so area = 0.89435
0.8944
DR SUSANNE HANSEN SARAL
DR SUSANNE HANSEN SARAL
DR SUSANNE HANSEN SARAL
P(110 ≤ X < 125) = 0.8944 – 0.6915
= 0.2029
The probability of completing between 110 and 125 days is about 20%
DR SUSANNE HANSEN SARAL