Слайд 2
Человек подобен дроби: числитель - это он сам,
а знаменатель то, что он о себе думает.
Чем
больше знаменатель, тем меньше дробь.
(Л.Н. Толстой)
Слайд 3
Из истории возникновения обыкновенных дробей:
Дроби в Вавилоне;
Дроби в
Древнем Египте;
Дроби в Древнем Риме.
Открытие десятичных дробей.
Оглавление
Слайд 4
Из истории возникновения
обыкновенных дробей
Необходимость в дробных числах
возникла у человека на весьма ранней стадии развития. Уже
дележ добычи, состоявший из нескольких убитых животных, между участниками охоты, когда число животных оказывалось не кратным числу охотников, могло привести первобытного человека к понятию о дробном числе.
Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения.
Слайд 5
Потребность в более точных измерениях привела к тому,
что начальные единицы меры начали дробить на 2, 3
и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.
В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин. Народы прошли через многие варианты записи дробей, пока не пришли к современной записи.
Слайд 6
Вавилоняне пользовались всего двумя цифрами. Вертикальная черточка обозначала
одну единицу, а угол из двух лежащих черточек –
десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.
Дроби в Вавилоне
Слайд 7
шестидесятиричные дроби
В древнем Вавилоне предпочитали постоянный знаменатель, равный
60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и
арабские математики и астрономы. Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы счисления. Скорее всего здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты. В этом отношении шестидесятеричные дроби можно сравнить с нашими десятичными дробями. Вместо слов «шестидесятые доли», «три тысячи шестисотые доли» говорили короче: «первые малые доли», «вторые малые доли». От этого и произошли наши слова «минута» (по латыни «меньшая») и «секунда» (по латыни «вторая»). Так что вавилонский способ обозначения дробей сохранил своё значение до сих пор.
Слайд 8
Дроби в Древнем Египте
В Древнем Египте архитектура достигла
высокого развития. Для того, чтобы строить грандиозные пирамиды и
храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.
Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.
Слайд 9
"Египетские" дроби
В Древнем Египте некоторые дроби имели свои
особые названия – а именно, часто возникающие на практике
1/2, 1/3, 2/3, 1/4, 3/4, 1/6 и 1/8. Кроме того, египтяне умели оперировать с так называемыми аликвотными дробями (от лат. aliquot – несколько) типа 1/n – их поэтому иногда также называют «египетскими»; эти дроби имели свое написание: вытянутый горизонтальный овальчик и под ним обозначение знаменателя. Остальные дроби они записывали в виде суммы долей. Дробь 7/8 записывали в виде долей: ½+1/4+1/8.
Слайд 10
Как использовались дроби в Древнем Египте,
позволила нам узнать расшифровка папирусного свитка, найденного в Луксоре
в 1858 г. Генрихом Риндом. Сейчас этот свиток находится в Британском музее в Лондоне. Папирус Ринда был написан писцом по имени Ахмес примерно в 1650 г. до нашей эры. Это математическая рукопись, составленная учителем для своих учеников, готовившихся стать придворными писцами.
математический папирус Ринда
В папирусе есть задача: разделить семь хлебов между восемью людьми. Если резать каждый хлеб на 8 частей, придётся сделать 49 разрезов. А по–египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: ½+1/4+1/8. Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб – на 8 частей (всего 17 разрезов).
Слайд 11
Дроби в Древнем Риме
Интересная система
дробей была в Древнем Риме. Она основывалась на делении
на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.
1 тройская унция золота — мера веса драгоценных металлов
Слайд 12
скрупулёзно - "скрупулус"
Даже сейчас иногда говорят: "Он скрупулёзно
изучил этот вопрос." Это значит, что вопрос изучен до
конца, что не одной самой малой неясности не осталось. А происходит странное слово "скрупулёзно" от римского названия 1/288 асса - "скрупулус". В ходу были и такие названия: "семис"- половина асса, "секстанс"- шестая его доля, "семиунция"- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию (2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.
Слайд 13
процент - "на сто"
Из-за того что в двенадцатеричной
системе нет дробей со знаменателями 10 или 100, римляне
затруднялись делить на 10, 100 и т. д. При делении 1001 асса на 100 один римский математик сначала получил 10 ассов, потом раздробил асе на унции и т. д. Но от остатка он не избавился. Чтобы не иметь дела с такими вычислениями, римляне стали использовать проценты.
Так как слова "на сто" звучали по-латыни "про центум", то сотую часть и стали называть процентом.
Слайд 14
Открытие десятичных дробей
Уже несколько тысячелетий человечество пользуется дробными
числами, а вот записывать их удобными десятичными знаками оно
додумалось значительно позже.
Сегодня мы пользуемся десятичными дробями естественно и свободно. В Западной Европе 16 в. вместе с широко распространённой десятичной системой представления целых чисел в расчётах повсюду применялись шестидесятеричные дроби, восходящие ещё к древней традиции вавилонян.
Слайд 15
Понадобился светлый ум нидерландского математика Симона Стевина, чтобы
привести запись и целых, и дробных чисел в единую
систему. По-видимому, толчком создания десятичных дробей послужили составленные им таблицы сложных процентов. В 1585 г. он опубликовал книгу “Десятина”, в которой объяснил десятичные дроби.
Симон Стевин
Слайд 16
применение десятичных
дробей
С начала XVII века начинается интенсивное
проникновение десятичных дробей в науку и практику. В Англии
в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером.
Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид – проценты – применяются намного чаще, чем обыкновенные дроби.