Слайд 2
Все время, когда мы имеем дело с формой,
размером, положением предмета в пространстве, мы вовлечены в геометрию.
Когда доисторические люди занимались ткачеством или отделкой зданий, они пользовались геометрией, не зная ее. Древним египтянам была нужна геометрия, чтобы измерить участки земли, подвергавшиеся затоплению во время разливов Нила. Им была нужна
геометрия в строительных целях, когда религия заставила их строить могилы для умерших — пирамиды. Само слово «геометрия» произошло от греческих слов «Земля» и «измерять» и, вероятно, является переводом египетского слова.
Слайд 3
В 280 году до н.э. ученый Эвклид, живший
в египетском городе Александрия, написал книгу по геометрии. Эта
книга, называвшаяся «Начала», была учебником около 2000 лет для всех желающих изучать геометрию.
Сегодня мы называем элементарную геометрию Эвклидовой, но современные ученые отказались от части материала Эвклида, как от несовременного. Куда бы мы ни повернулись в нашей жизни, повсюду мы видим применение принципов геометрии. Она может быть в строительстве сооружений и оформлении их, в архитектуре, устройстве интерьеров, даже в создании ландшафта. И, конечно, прямо связаны с геометрией инструменты обычного пользования, такие, как компас, секстант, теодолит, используемый землемерами.
Слайд 4
Сначала геометрия была интуитивной. Это
означает, что факты признавались существующими без попытки доказать это
или продемонстрировать, что это действительно так. Но в 600 году до н.э. греческий ученый Фалес развил идею, что должны существовать пути, доказывающие, что геометрические факты истинны. В геометрии такая истина называется теоремой. Фалес открыл доказательства теорем, которые люди принимали на веру до этого времени. Это послужило началом доказательной геометрии. Элементарная геометрия делилась на две части: плоскостная геометрия и геометрия тел. В плоскостной геометрии рассматривались предметы, существующие в плоскости. У них было только два измерения: длина и ширина. Геометрия тел — геометрия трех измерений. Она имеет дело с предметами, обладающими длиной, шириной и высотой. Это такие предметы, как конусы, сферы, цилиндры и так далее
Слайд 6
Треугольник Рело.
Треугольник Рело — это геометрическая фигура,
образованная пересечением трёх равных кругов радиуса a с центрами
в вершинах равностороннего треугольника со стороной a. Сверло, сделанное на основе треугольника Рело, позволяет сверлить квадратные отверстия (с неточностью в 2%).
Слайд 7
Абрахам де Муавр.
Английский математик Абрахам де Муавр
в престарелом возрасте однажды обнаружил, что продолжительность его сна
растёт на 15 минут в день. Составив арифметическую прогрессию, он определил дату, когда она достигла бы 24 часов — 27 ноября 1754 года. В этот день он и умер.
Слайд 8
Мнения разошлись…
В геометрии Лобачевского сумма углов треугольника
всегда меньше 180. В геометрии Эвклида она всегда равна
180. В геометрии Римана сумма углов треугольника всегда больше 180.
Слайд 9
У чисел тоже бывают праздники!
У числа Пи
есть два неофициальных праздника. Первый — 14 марта, потому
что этот день в Америке записывается как 3.14. Второй — 22 июля, которое в европейском формате записывается 22/7, а значение такой дроби является достаточно популярным приближённым значением числа Пи.