Слайд 3
1.Уравнения, решаемые по определению
logab=c,
ac =b, a>0, a≠1,
Слайд 4
Пример:
log3(2-x)=2 ОДЗ: 2-x>0
2-x=32
x
Слайд 5
2.Уравнения, решаемые с использованием основных свойств
loga(bc) =loga│b│+loga│c│
loga(b/c)=loga│b│- loga│c│
logabp=ploga│b│
Слайд 6
Пример:
log2(x+1)+log2(x+2)=1 ОДЗ: x+1>0 x>-1
log2(x+1)(x+2)=1
x+2>0 x>-2
(x+1)(x+2)=21
х>-1
x2+3x=0
x(x+3)=0
x1=0 x2=-3(не уд. ОДЗ)
Ответ: x=0
Слайд 7
3.Метод потенцирования
f(x)>0
logaf(x)=logag(x) g(x)>0
f(x)=g(x)
Слайд 8
Пример:
lg(x-4)+lg(x-6)=lg8 ОДЗ: x-4>0 x>4 x>6
lg(x-4)(x-6)=lg8
x-6>0 x>6
(x-4)(x-6)=8
x2-10x+16=0
x1=8
x2=2 (не уд. ОДЗ)
Проверка: x=8
lg4+lg2=lg8
Lg8=lg8
Ответ.
8
Слайд 9
4.Метод подстановки
а)Уравнения, сводящиеся к квадратным
Пример1:
lg2x-3lgx+2=0
ОДЗ: x>0
пусть lgx=t, tєR
t2-3t+2=0
t1=1 t2=2
если t1=1, то если t2=2, то
lgx=1 lgx=2
x=10 x=100
Ответ: x1=10, x2=100
Слайд 10
Пример2:
lg2(10x)=5-lgx ОДЗ: x>0
(lg10+lgx)2=5-lgx
1+2lgx+lg2x-5+lgx=0
lg2x+3lgx-4=0
пусть lgx=t
t2+3t-4=0
t1=1;
t2= - 4
если t1=1, то если t2=
- 4,то
lgx=1 lgx=-4
x=10 x=0,0001
Ответ: x1=10, x2=0,0001
Слайд 11
б)Использование формулы
logab=1/logba
Слайд 12
Пример:
logx(9x2)log23x=4 ОДЗ:
x>0
(logx9+logxx2)log23x=4
x≠1
(2logx3+2)log23x=4
(2/log3x+2)log23x=4
пусть log3x=t (2/t+2)t2=4
2t2+2t-4=0
t1=1; t2=-2
если t1=1, то если t2=-2, то
log3x=1; x1=3; log3x=-2. x2=1/9.
Ответ: x1=3, x2=1/9
Слайд 13
5.Метод приведения к одному основанию
logab=logсb/logca
a>0,b>0, c>0 a≠1, c
≠1
Слайд 14
Пример:
log2x+log4x+log8x=11 ОДЗ:x>0
log2x+log22x+log23x=11
log2x+1/2log2x+1/3log2x=11,log2x ≠0,x ≠1
11/6log2x=11
log2x=6
x=26
x=64
Ответ: x=64
Слайд 15
6.Метод логарифмирования
logabр=рlogab
b>0; a>0; a≠1
Слайд 16
Пример:
x (lgx+5)/3 =105+lgx
ОДЗ:x>0
прологарифмируем уравнение по основанию 10
lgx(lgx+5)/3=lg105+lgx
((lgx+5)/3)lgx=(5+lgx)lg10
1/3(lgx+5)lgx=5+lgx|*3
(lgx+5)lgx=15+3lgx
lg2x+5lgx=15+3lgx
lg2x+2lgx-15=0
пусть lgx=t
t2+2t-15=0
t1=-5; t2=3
если t1=-5,
то lgx=-5 если t2=3, то lgx=3
x1=0,00001 x2=1000
Ответ: x1=0,00001, x2=1000
Слайд 17
7.Использование специальной формулы
a logсb = b logсa
b>0;b≠1
a>0; a≠1;
с>0; с≠1
Слайд 18
Пример:
3xlog52+2log5x=64 ОДЗ: x>0,x ≠1
3*2log5x+2log5x=64
4*2log5x=64
|:4
2log5x=16
2log5x=24
log5x=4
x=54
x=625
Ответ: x=625
Слайд 19
8.Использование свойств монотонности функции
Пример:
log3(x+1)+log4(5x+6)=3 ОДЗ:
x> -1,2
y= log3(x+1) - возрастающая функция
y= log4(5x+6)- возрастающая функция
3
- const
Сумма двух возрастающих функций равна возрастающей функции.
Используем утверждение: если возр. функция
равна const или убыв. функции, тогда
уравнение имеет один корень, который находится с
помощью метода подбора.
Ответ: x=2
Слайд 20
9.Использование свойств ограниченности функции
Пример:
log2(17-|sin0,5πx|)=√2x+15-x2 , x ≥0
1)рассмотрим левую
часть
т.к. 0≤ |sin0,5πx| ≥ 1 ,то
log2(17-|sin0,5πx|) ≥log2(17-1)=log216=4 т.е.
0≤ |sin0,5πx|
≥ 4
при x=1 - достигается равенство
2)рассмотрим правую часть
√2x+15-x2= √16-(x+1) ≤ √16=4=16-(x-1)2
√2x+15-x2≤4
при x=1 – достигается равенство
Ответ: x=1
Слайд 21
10.Однородные уравнения II степени
ax2+bxy+cy2=0|:y2≠0
a(x/y)2+b(x/y)+c=0
at2+bt+c=0
Слайд 22
Пример:
3log22(x+1)-4log2(2x+1)log2(x+1)+log22(2x+1)=0
Делим на log22(2x+1)
ОДЗ: x>1/2
3(log2(x+1)/log2(2x+1))2-4log2(2x+1)log2(x+1)/log22(2x+1)+1=0
t
3t2-4t+1=0
t1=1 t2=1/3
если t1=1 то, если t2=1/3 то,
log2(x+1)/log2(2x+1)=1 log2(x+1)/log2(2x+1)=1/3
log2(x+1)=log2(2x+1) 3log2(x+1)=log2(2x+1)
x+1=2x+1 log2(x+1)3=2x+1
x=0 x(x2+3x+1)=0
x1=0 x2=(-3+√5)/2 x3=(-3-√5)/2
Ответ: x1=0, x2= =(-3+√5)/2 не уд.
Слайд 23
11.Уравнения, содержащие неизвестное в основании и показатели степени
Пример:
x√x=√xx
ОДЗ: x>0,
logx x√x =logx √xx x≠ 1
logx xx0,5 =logx (x0,5)x
√xlogx x=0,5logxx
√x=0,5x
√x(1-0,5√x)=0
√x=0 (не уд.ОДЗ) (1-0,5√x)=0
√x=2
x=4
Ответ: x=4
Слайд 24
12.Функционально - графический метод
(х – 1) = log2x
Строим
графики функций у = (х – 1) и
у
= log2x.
Ответ: х = 1, х=2.
1
1
2
х
у
0