Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Параметрические и непараметрические методы проверки статистических гипотез

Содержание

Статистические критерии – это ПРАВИЛО, обеспечивающее принятие истинной и отклонение ложной гипотезы с высокой вероятностью.Статистические критерии – это МЕТОД расчета определенного числа. Статистические критерии – это ЧИСЛО.
ПАРАМЕТРИЧЕСКИЕ и НЕПАРАМЕТРИЧЕСКИЕ МЕТОДЫ ПРОВЕРКИ СТАТИСТИЧЕСКИХ ГИПОТЕЗКритерий t-Стьюдента для независимых и зависимых Статистические критерии – это ПРАВИЛО, обеспечивающее принятие истинной и отклонение ложной гипотезы Параметрические критерии – это критерии, включающие в формулу расчета параметры распределения (среднее Возможности и ограничения параметрических критериевПозволяют прямо оценить различия в средних, полученных в Возможности и ограничения параметрических критериевЭкспериментальные данные должны отвечать двум, а иногда трем, Возможности и ограничения непараметрических критериевПозволяют оценить лишь средние тенденции, например, ответить на Возможности и ограничения непараметрических критериевОтсутствует возможность оценить взаимодействие двух и более факторов.Экспериментальные Правило принятия  статистического выводаСтатистический критерий имеет эмпирическое и критическое значение. Эмпирическое Правило принятия  статистического вывода1) на основе полученных экспериментальных данных вычислить эмпирическое 4) расположить эмпирическое значение критерия Кэмп и критические значения Правило принятия  статистического вывода5) сформулировать принятие решения:если Кэмп находится в зоне Правило признания значимости различийВ большинстве случаев для признания различий значимыми ЭМПИРИЧЕСКОЕ (полученное) Зависимые и независимые выборкиЗависимые выборки – это те выборки, в которых каждому Выбор критерия для сравнения двух выборок Критерий t-Стьюдента  для независимых выборокПроверяет гипотезу о том, что средние значения Критерий t-Стьюдента  для независимых выборокСтруктура исходных данных: изучаемый признак(и) измерен у Формула для подсчетовгде,   – среднее значение первой выборки Критерий t-Стьюдента  для зависимых выборокПроверяет гипотезу о том, что средние значения Критерий F-ФишераПрименяется для проверки гипотезы о равенстве дисперсий двух выборок. Его относят к критериям Критерий F-ФишераВ регрессионном анализе критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. В частности, U-критерий Манна-Уитни для независимых выборок Показывает насколько совпадают (пересекаются) два ряда значений Т-критерий Вилкоксона  для зависимых выборокВ основе лежит упорядочивание величин разностей (сдвигов) Н-критерий Крускала-Уоллиса для 3 и более независимых выборокПрименяется для оценки различий по Н-критерий Крускала-УоллисаУсловия для применения:Измерение должно быть проведено в шкале порядка, интервалов или Критерий Фишера φ* (фи) (Угловое преобразование Фишера)Критерий φ (фи) предназначен для сопоставления Критерий Фишера φ*Условия для применения:Измерение может быть проведено в любой шкале.Характеристики выборок Классификация задач и методов их решения Классификация задач и методов их решения Классификация задач и методов их решения
Слайды презентации

Слайд 2 Статистические критерии – это ПРАВИЛО, обеспечивающее принятие истинной

Статистические критерии – это ПРАВИЛО, обеспечивающее принятие истинной и отклонение ложной

и отклонение ложной гипотезы с высокой вероятностью.
Статистические критерии –

это МЕТОД расчета определенного числа.
Статистические критерии – это ЧИСЛО.

Слайд 3 Параметрические критерии – это критерии, включающие в формулу

Параметрические критерии – это критерии, включающие в формулу расчета параметры распределения

расчета параметры распределения (среднее и дисперсии).
Непараметрические критерии – это

критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами.


Слайд 4 Возможности и ограничения параметрических критериев
Позволяют прямо оценить различия

Возможности и ограничения параметрических критериевПозволяют прямо оценить различия в средних, полученных

в средних, полученных в двух выборках (t-критерий Стьюдента)
Позволяют прямо

оценить различия в дисперсиях (критерий F-Фишера)
Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ)
Позволяют оценить взаимодействие двух и более факторов и их влияние на изменение признака (двухфакторный дисперсионный анализ)


Слайд 5 Возможности и ограничения параметрических критериев
Экспериментальные данные должны отвечать

Возможности и ограничения параметрических критериевЭкспериментальные данные должны отвечать двум, а иногда

двум, а иногда трем, условиям:
а) значения признака измерены по

интервальной шкале;
б) распределение признака является нормальным;
в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейке комплекса.
Если перечисленные условия выполняются, то параметрические критерии оказываются более мощными, чем непараметрические.


Слайд 6 Возможности и ограничения непараметрических критериев
Позволяют оценить лишь средние

Возможности и ограничения непараметрических критериевПозволяют оценить лишь средние тенденции, например, ответить

тенденции, например, ответить на вопрос, чаще ли в выборке

А встречаются более высокие, а в выборке Б – более низкие значения признака (критерии Розенбаума, Манна-Уитни, угловое преобразование Фишера и др.).
Позволяют оценить лишь различия в диапазонах вариативности признака (критерий угловое преобразование Фишера).
Позволяют выявить тенденции изменения признака при переходе от условия к условию при любом распределении признака (критерии тенденций Пейджа, Джонкира).


Слайд 7 Возможности и ограничения непараметрических критериев
Отсутствует возможность оценить взаимодействие

Возможности и ограничения непараметрических критериевОтсутствует возможность оценить взаимодействие двух и более

двух и более факторов.
Экспериментальные данные могут НЕ ОТВЕЧАТЬ ни

одному из условий параметрической статистики:
а) значения признака могут быть представлены в любой шкале, начиная от шкалы наименований;
б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке;
в) требование равенства дисперсий отсутствует.


Слайд 8 Правило принятия статистического вывода
Статистический критерий имеет эмпирическое и

Правило принятия статистического выводаСтатистический критерий имеет эмпирическое и критическое значение. Эмпирическое

критическое значение.
Эмпирическое значение критерия – это число, полученное

по правилу расчета критерия.
Критическое значение критерия – это число, которое определено для данного критерия при заданных переменных (например, количества человек в выборке), выделяющее зону значимости и незначимости для признака. См. Таблицы критических значений критерия.
По соотношению эмпирического и критического значений критерия выявляется уровень статистической значимости и делается вывод о том, подтверждается или опровергается нулевая гипотеза.


Слайд 9 Правило принятия статистического вывода
1) на основе полученных экспериментальных

Правило принятия статистического вывода1) на основе полученных экспериментальных данных вычислить эмпирическое

данных вычислить эмпирическое значение критерия Кэмп
2) по соответствующим критерию

таблицам найти критические значения К1кр и К2кр, которые отвечают уровням значимости в 5% и 1%
3) записать критическое значение в виде:
К1кр для p ≤ 0 05 и К2кр для p ≤ 0 01


Слайд 10 4) расположить эмпирическое значение критерия Кэмп и критические

4) расположить эмпирическое значение критерия Кэмп и критические значения

значения К1кр и К2кр на оси значимости (ось абсцисс

Ох декартовой системы координат, на которой выделено три зоны: левая (незначимости), средняя (неопределенности, р ≤ 0,05), правая (значимости, р ≤ 0,01)

Слайд 11 Правило принятия статистического вывода
5) сформулировать принятие решения:
если Кэмп

Правило принятия статистического вывода5) сформулировать принятие решения:если Кэмп находится в зоне

находится в зоне незначимости, то принимается гипотеза Н0 об

отсутствии различий;
если Кэмп находится в зоне неопределенности, то есть вероятность принятия ложного решения (необходимо увеличить выборку или воспользоваться другим критерием);
если Кэмп находится в зоне значимости, то гипотеза об отсутствии различий Н0 отклоняется и принимается гипотеза Н1 о наличии различий


Слайд 12 Правило признания значимости различий
В большинстве случаев для признания

Правило признания значимости различийВ большинстве случаев для признания различий значимыми ЭМПИРИЧЕСКОЕ

различий значимыми ЭМПИРИЧЕСКОЕ (полученное) ЗНАЧЕНИЕ КРИТЕРИЯ должно ПРЕВЫШАТЬ КРИТИЧЕСКОЕ

(табличное) в соответствии с числом степеней свободы для двух независимых выборок df = (n1 + n2) – 2, для двух зависимых выборок df = (n1 + n2) – 1 или объемом выборки (n).
Исключение: критерий U-Манна-Уитни, критерий G-знаков, критерий T-Вилкоксона, в которых нужно придерживаться противоположного правила.


Слайд 13 Зависимые и независимые выборки
Зависимые выборки – это те

Зависимые и независимые выборкиЗависимые выборки – это те выборки, в которых

выборки, в которых каждому респонденту одной выборки поставлен в

соответствие по определенному признаку респондент другой выборки.
Независимые выборки – это те выборки, в которых вероятность отбора любого респондента одной выборки не зависит от отбора любого из респондентов другой выборки.

Слайд 14 Выбор критерия для сравнения двух выборок

Выбор критерия для сравнения двух выборок

Слайд 15 Критерий t-Стьюдента для независимых выборок
Проверяет гипотезу о том,

Критерий t-Стьюдента для независимых выборокПроверяет гипотезу о том, что средние значения

что средние значения двух генеральных совокупностей из которых извлечены

независимые выборки, отличаются друг от друга.
Исходные предположения:
Одна выборка извлекается из одной генеральной совокупности, другая – из другой (значения измеренных признаков гипотетически не должны коррелировать между собой).
В обеих выборках распределение приблизительно соответствует нормальному закону.
Дисперсии признаков в двух выборках примерно одинаковы.

Слайд 16 Критерий t-Стьюдента для независимых выборок
Структура исходных данных: изучаемый

Критерий t-Стьюдента для независимых выборокСтруктура исходных данных: изучаемый признак(и) измерен у

признак(и) измерен у респондентов, каждый из которых принадлежит к

одной из сравниваемых выборок.
Ограничения:
Распределения существенно не отличаются от нормального закона в обеих выборках.
При разной численности выборок дисперсии статистически достоверно не различаются (проверяется по критерию F-Фишера или по критерию Ливена).



Слайд 17 Формула для подсчетов



где,
– среднее значение

Формула для подсчетовгде,  – среднее значение первой выборки  –

первой выборки
– среднее значение второй выборки

– стандартное отклонение по первой выборке
– стандартное отклонение по второй выборке









-


Слайд 18 Критерий t-Стьюдента для зависимых выборок
Проверяет гипотезу о том,

Критерий t-Стьюдента для зависимых выборокПроверяет гипотезу о том, что средние значения

что средние значения двух генеральных совокупностей, их которых извлечены

сравниваемые зависимые выборки, отличаются друг от друга.
Исходные предположения:
Каждому представителю одной выборки поставлен в соответствие представитель другой выборки.
Данные двух выборок положительно коррелируют.
Распределение в обеих выборках соответствует нормальному закону.
Структура исходных данных: имеется по два значения изучаемого признака(ов).

Слайд 19 Критерий F-Фишера
Применяется для проверки гипотезы о равенстве дисперсий двух

Критерий F-ФишераПрименяется для проверки гипотезы о равенстве дисперсий двух выборок. Его относят

выборок. Его относят к критериям рассеяния.
*Имеет смысл перед использованием критерия

t-Стьюдента предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться критерием t-Стьюдента (гипотезы о равенстве средних значений в двух выборках).
Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. Перед его применением рекомендуется выполнить проверку нормальности распределения признака.


Слайд 20 Критерий F-Фишера
В регрессионном анализе критерий Фишера позволяет оценивать значимость линейных

Критерий F-ФишераВ регрессионном анализе критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. В

регрессионных моделей.
В частности, он используется в шаговой регрессии для проверки

целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель.
В дисперсионном анализе критерий Фишера позволяет оценивать значимость факторов и их взаимодействия.



Слайд 21 U-критерий Манна-Уитни для независимых выборок
Показывает насколько совпадают

U-критерий Манна-Уитни для независимых выборок Показывает насколько совпадают (пересекаются) два ряда

(пересекаются) два ряда значений измеренного признака (ов).

Условия для применения:
Распределение

хотя бы в одной выборке отличается от нормального вида.
Небольшой объем выборки (больше 100 человек – используют параметрические критерии, меньше 10 человек – непараметрические, но результаты считаются предварительными).
Нет гомогенности дисперсий при сравнении средних значений.

Слайд 22 Т-критерий Вилкоксона для зависимых выборок
В основе лежит упорядочивание

Т-критерий Вилкоксона для зависимых выборокВ основе лежит упорядочивание величин разностей (сдвигов)

величин разностей (сдвигов) значений признака в каждой паре его

измерений.
Идея критерия заключается в подсчете вероятности получения минимальной из положительных и отрицательных разностей при условии, что распределение положительных или отрицательных разностей равновероятно и равно




Слайд 23 Н-критерий Крускала-Уоллиса для 3 и более независимых выборок
Применяется для

Н-критерий Крускала-Уоллиса для 3 и более независимых выборокПрименяется для оценки различий

оценки различий по степени выраженности анализируемого признака одновременно между

тремя, четырьмя и более выборками.
Позволяет выявить степень изменения признака в выборках, не указывая на направление этих изменений.

Слайд 24 Н-критерий Крускала-Уоллиса
Условия для применения:
Измерение должно быть проведено в

Н-критерий Крускала-УоллисаУсловия для применения:Измерение должно быть проведено в шкале порядка, интервалов

шкале порядка, интервалов или отношений.
Выборки должны быть независимыми.
Допускается разное

число респондентов в сопоставляемых выборках.
При сопоставлении трех выборок допускается, чтобы в одной из них было n=3, а в двух других n=2. Но в этом случае различия могут быть зафиксированы только на уровне средней значимости.

Слайд 25 Критерий Фишера φ* (фи) (Угловое преобразование Фишера)
Критерий φ (фи)

Критерий Фишера φ* (фи) (Угловое преобразование Фишера)Критерий φ (фи) предназначен для

предназначен для сопоставления двух рядов выборочных значений по частоте

встречаемости какого-либо признака.
Этот критерий можно применять на любых выборках – зависимых и независимых. А также можно оценивать частоту встречаемости признака и количественной, и качественной переменной.

Слайд 26 Критерий Фишера φ*
Условия для применения:
Измерение может быть проведено

Критерий Фишера φ*Условия для применения:Измерение может быть проведено в любой шкале.Характеристики

в любой шкале.
Характеристики выборок могут быть любыми.
Нижняя граница –

в одной из выборок может быть только 2 наблюдения, при этом во второй должно быть не менее 30 наблюдений. Верхняя граница не определена.
При малых объемах выборок, нижние границы выборок должны содержать не менее 5 наблюдений каждая.

Слайд 27 Классификация задач и методов их решения

Классификация задач и методов их решения

Слайд 28 Классификация задач и методов их решения

Классификация задач и методов их решения

  • Имя файла: parametricheskie-i-neparametricheskie-metody-proverki-statisticheskih-gipotez.pptx
  • Количество просмотров: 148
  • Количество скачиваний: 0