Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Смеси и сплавы-задачи

Задачи на смеси и сплавы охватывают большой круг ситуаций: смешение товаров разной цены; смешение жидкостей с различным содержанием соли; смешение кислот разной концентрации; сплавление металлов с разным содержанием некоторого металла.
Задачи на смеси и сплавыУчитель математикиБайгулова Нина Витальевна МАОУ СОШ №58 Задачи на смеси и сплавы охватывают большой круг ситуаций:  смешение товаров Основные сведенияПри решении текстовых задач на смеси и сплавы постоянно приходится работать Алгоритм1. Арифметический способ решенияПри образовании смеси складываются абсолютные содержания. Поэтому, если известны Задача 1.  Даны два куска с различным содержанием олова. Первый, массой Проверь себяСмешали 300г 50%-го и 100г 30%-го раствора кислоты. Определите процентное содержание Алгоритм2.  Применение линейного уравненияПри составлении уравнения прослеживается содержание какого-нибудь одного вещества Задача 2. Сколько литров воды надо добавить к 20 литрам 5% раствора Проверь себя.	У торговца имеется два бочонка вина: емкостью 40л и емкостью 10л. Алгоритм 3.  Применение систем линейных уравненийОбозначить одну неизвестную величину через х, Задача 3.  Имеется два раствора поваренной соли разной концентрации. Если слить Проверь себя. В сосуде было 12 л чистого спирта. Часть спирта отлили Литературные источники.1. Шевкин А.В. Текстовые задачи. 7-11 классы: Учебное пособие по математике.
Слайды презентации

Слайд 2 Задачи на смеси и сплавы охватывают большой круг

Задачи на смеси и сплавы охватывают большой круг ситуаций: смешение товаров

ситуаций:

смешение товаров разной цены;
смешение жидкостей с различным

содержанием соли;
смешение кислот разной концентрации;
сплавление металлов с разным содержанием некоторого металла.

Слайд 3 Основные сведения
При решении текстовых задач на смеси и

Основные сведенияПри решении текстовых задач на смеси и сплавы постоянно приходится

сплавы постоянно приходится работать со следующими понятиями.
Абсолютное содержание вещества

в смеси – это количество вещества, выраженное в обычных единицах измерения (граммах, литрах и т.д.).
Относительное содержание вещества в смеси – это отношение абсолютного содержания к общей массе (объему) смеси, т.е.
относительное содержание = абсолютное содержание
общая масса
Часто относительное содержание называют концентрацией или процентным содержанием, а абсолютное содержание - количество чистого вещества.

Слайд 4 Алгоритм1. Арифметический способ решения
При образовании смеси складываются абсолютные содержания.

Алгоритм1. Арифметический способ решенияПри образовании смеси складываются абсолютные содержания. Поэтому, если

Поэтому, если известны только относительные содержания, то нужно:
подсчитать абсолютные

содержания компонентов каждой смеси;
сложить абсолютные содержания, то есть подсчитать абсолютные содержания компонентов полученной смеси;
найти массу полученной смеси;
подсчитать относительное содержание компонентов полученной смеси.
Записать ответ.


Слайд 5 Задача 1. Даны два куска с различным содержанием

Задача 1. Даны два куска с различным содержанием олова. Первый, массой

олова. Первый, массой 300г, содержит 20% олова. Второй, массой

200г, содержит 40% олова. Сколько процентов олова будет содержать сплав, полученный из этих кусков?


Решение.

300 •20 : 100 = 60 (г) - олова в первом сплаве, 200 • 40 : 100 = 80 (г) - олова во втором сплаве ;
60 + 80 = 140 (г) - олова в двух сплавах вместе;
200 + 300 = 500 (г) – масса куска после сплавления;
140 : 500 • 100 = 28% -содержится олова после сплавления.


300г

20% олова

200г

40% олова

Ответ: 28%.


Слайд 6 Проверь себя
Смешали 300г 50%-го и 100г 30%-го раствора

Проверь себяСмешали 300г 50%-го и 100г 30%-го раствора кислоты. Определите процентное

кислоты. Определите процентное содержание кислоты в полученной смеси.
(Из «Арифметики»

А.П. Киселева) 30 ведер вина в 48 градусов смешано с 24 ведрами вина в 36 градусов. Сколько градусов в смеси? (Число градусов означает процентное содержание чистого спирта в вине)
Имеется чай двух сортов – по 80р. И 120р. За 1кг. Смешали 300г первого и 200 г второго сорта. Определите цену 100г полученной смеси.
(Из «Арифметики» А.П. Киселева) Смешано три сорта муки: 15 фунтов по 8к., 20фунтов по 7к. и 25 фунтов по 4к. за фунт. Что стоит фунт смеси?
Сплавили 2 кг сплава цинка и меди, содержащего 20% цинка, и 6 кг сплава цинка и меди, содержащего 40% цинка. Найдите процентную концентрацию меди в получившемся сплаве.

Слайд 7 Алгоритм2. Применение линейного уравнения
При составлении уравнения прослеживается содержание

Алгоритм2. Применение линейного уравненияПри составлении уравнения прослеживается содержание какого-нибудь одного вещества

какого-нибудь одного вещества из тех, которые сплавляются (смешиваются) и

т.д.

Обозначить неизвестную величину через х.
Составить уравнение по условию задачи.
Решить получившееся уравнение.
Перейти к условию задачи (ответить на вопрос).
Записать ответ.



Слайд 8 Задача 2. Сколько литров воды надо добавить к 20

Задача 2. Сколько литров воды надо добавить к 20 литрам 5%

литрам 5% раствора соли, чтобы получить 4% раствор?
Решение.
Пусть

количество добавленной воды – х (л),
тогда масса нового раствора – 20+х (л),
20×0,05=1(л)- содержится соли в 20 литрах 5% раствора.
Имеем : соли 1 (л) это 4%,
раствора 20+х (л) это 100%.
Составим и решим уравнение:







Ответ: 5 литров воды надо добавить.

20 (л)

5% соли


Слайд 9 Проверь себя.
У торговца имеется два бочонка вина: емкостью

Проверь себя.	У торговца имеется два бочонка вина: емкостью 40л и емкостью

40л и емкостью 10л. Цены вина за литр различны,

но неизвестны. По какому одинаковому количеству вина надо взять из каждого бочонка и перелить в другой бочонок, чтобы цена вина за литр в двух бочонках сравнялась.
Имеется кусок сплава меди с оловом 12кг содержащий 45% меди. Сколько чистого олова надо прибавить к этому сплаву, чтобы получился новый сплав содержащий 40% меди?
Из сосуда, содержащего 54л чистой кислоты, вылили несколько литров и после этого долили сосуд водой до прежнего объема. Затем из сосуда вылили смеси столько же литров, как и в первый раз. В результате в смеси, оставшейся в сосуде, осталось чистой кислоты 24л. Сколько кислоты вылили в первый раз?

Слайд 10 Алгоритм 3. Применение систем линейных уравнений
Обозначить одну неизвестную

Алгоритм 3. Применение систем линейных уравненийОбозначить одну неизвестную величину через х,

величину через х, другую неизвестную величину через у.
Составить

систему двух линейных уравнений по условию задачи.
Решить получившуюся систему уравнений.
Перейти к условию задачи (ответить на вопрос).
Записать ответ.



Слайд 11 Задача 3. Имеется два раствора поваренной соли разной

Задача 3. Имеется два раствора поваренной соли разной концентрации. Если слить

концентрации. Если слить вместе 100г первого раствора и 200

г второго раствора, то получится 50%-й раствор. Если же слить вместе 300г первого раствора и 200г второго, то получится 42%-й раствор. Найти концентрацию второго раствора.


Решение.

Пусть процентное содержание соли в первом растворе – х %,
а во втором растворе – у %.

Составим и решим систему уравнений:
х + 2у = 0,5·(100+200),
3х + 2у = 0,42(300+200);

х + 2у = 150,
3х + 2у = 210;

2х = 60,
х + 2у= 150;

х = 30,
у = 60.


Ответ: 60% концентрация второго раствора.

100 (г)

200 (г)


Слайд 12 Проверь себя.
В сосуде было 12 л чистого

Проверь себя. В сосуде было 12 л чистого спирта. Часть спирта

спирта. Часть спирта отлили и сосуд долили водой. Затем

отлили ещё столько же и опять долили водой. Сколько (в литрах) отливали каждый раз, если в сосуде оказался 25%-й раствор спирта?
В каждой из двух бочек содержится по 10 вёдер смеси спирта с водой. На 3 части воды приходится в первой бочке 7 частей спирта, а во второй- 2 части спирта. По сколько вёдер нужно взять из этих бочек для составления новой смеси, содержащей спирт и воду в отношении 5:3, чтобы из оставшейся в бочках смеси получить смесь, в которой спирта и воды поровну?
Имеются два раствора кислоты разной концентрации. Объем одного раствора – 4л, а другого -6л. Если их слить вместе, то получится 35%-ный раствор кислоты. Если же слить равные объемы этих растворов, то получится 36%-ный раствор кислоты. Сколько литров кислоты содержится в каждом из них первоначальных растворов?
Имеются два раствора кислоты разной концентрации. Объем одного раствора – 4л, а другого -6л. Если их слить вместе, то получится 35%-ный раствор кислоты. Если же слить равные объемы этих растворов, то получится 36%-ный раствор кислоты. Сколько литров кислоты содержится в каждом из них первоначальных растворов?


  • Имя файла: smesi-i-splavy-zadachi.pptx
  • Количество просмотров: 120
  • Количество скачиваний: 0