Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Теоремы сложения и умножения вероятностей

ТерминологияΩ – множество всех возможных исходов опыта. ω – элементарное событие (неразложимый исход опыта).Любое событие А есть некоторое подмножество Ω ( ). Ω – достоверное
Теоремы сложения и умножения вероятностей ТерминологияΩ – множество всех возможных исходов опыта. ПримерОпыт – получение оценки на экзамене. Основные определенияОпределение 1: Суммой двух событий А, B называется событие С, состоящее Основные определенияОпределение 3: События А1, А2,….,Аn – образуют полную группу, если ПримерОпыт – получение оценки на экзамене. Теорема сложения вероятностейТеорема 1: Вероятность суммы двух несовместных событий равна сумме вероятностей Теорема сложения вероятностейВ случае, когда события А и B совместны, вероятность их Теорема сложения вероятностейТеорема 2: ОпределенияОпределение 6: Условной вероятностью события А при наличии B называется вероятность события Теорема умножения вероятностейТеорема 3: Для независимых событий:  P(AB) = P(A)∙ P(B), Примеры:Из 25 билетов, студент знает 20 билетов. Какова вероятность того, что студент ПримерыСтудент сдает три экзамена. Ai – сдан i экзамен. Представить в виде ПримерыДва стрелка одновременно стреляют по мишени. Вероятность попадания первого 0,6, второго –
Слайды презентации

Слайд 2 Терминология
Ω – множество всех возможных исходов опыта.

ТерминологияΩ – множество всех возможных исходов опыта.    ω

ω – элементарное

событие (неразложимый исход опыта).
Любое событие А есть некоторое подмножество Ω ( ).
Ω – достоверное событие,
Ø – невозможное событие.



Слайд 3 Пример
Опыт – получение оценки на экзамене.

ПримерОпыт – получение оценки на экзамене.     ,

,
А=

{ ω:ω – положительная оценка}



Слайд 4 Основные определения
Определение 1: Суммой двух событий А, B

Основные определенияОпределение 1: Суммой двух событий А, B называется событие С,

называется событие С, состоящее в выполнении события А или

события B
. Суммой нескольких событий называется событие, состоящее в выполнении хотя бы одного из этих событий.
Определение 2:Произведением нескольких событий называется событие C, состоящее в совместном выполнении всех этих событий




Слайд 5 Основные определения
Определение 3: События А1, А2,….,Аn – образуют

Основные определенияОпределение 3: События А1, А2,….,Аn – образуют полную группу, если

полную группу, если
А1

А2 … Аn=Ω
Определение 4: События А1, А2,….,Аn несовместные, если Аj∩Ai =Ø (i≠j)
Определение 5: Противоположным по отношению к событию A называется событие , состоящее в не появлении А, а значит дополняющее его до Ω









Слайд 6 Пример
Опыт – получение оценки на экзамене.

ПримерОпыт – получение оценки на экзамене.     ,

,
Событие

А : получение пятерки
Событие : ?
: получение 2, 3, 4.



Слайд 7 Теорема сложения вероятностей
Теорема 1: Вероятность суммы двух несовместных

Теорема сложения вероятностейТеорема 1: Вероятность суммы двух несовместных событий равна сумме

событий равна сумме вероятностей этих событий.
P(A

B) = P(A) + P(B) (AB=Ø)
Пример: Студент берет билет (1,2,3,…,10). Какова вероятность того, что он выберет билет с четным номером?





Слайд 8 Теорема сложения вероятностей
В случае, когда события А и

Теорема сложения вероятностейВ случае, когда события А и B совместны, вероятность

B совместны, вероятность их суммы выражается формулой:

Пример: Студент берет

билет (1,2,3,…,10). Какова вероятность того, что студент вытянет билет, номер которого делится на 2 или на 3?



Слайд 9 Теорема сложения вероятностей
Теорема 2:


Теорема сложения вероятностейТеорема 2:

(Ai Aj = Ø, i ≠ j),




.



Если A1, …,An – несовместны, образуют полную группу, то


Сумма вероятностей противоположных событий равна 1:










Слайд 10 Определения
Определение 6: Условной вероятностью события А при наличии

ОпределенияОпределение 6: Условной вероятностью события А при наличии B называется вероятность

B называется вероятность события А, вычисляемая при условии, что

событие B произошло. Обозначается P(A׀B).
Определение 7: События А и B называются независимыми, если появление одного не меняет вероятности появления другого.
P(A ׀ B) = P(A), P(B ׀ A)=P(B), для независимых событий.

Слайд 11 Теорема умножения вероятностей
Теорема 3:
Для независимых событий:

Теорема умножения вероятностейТеорема 3: Для независимых событий: P(AB) = P(A)∙ P(B),

P(AB) = P(A)∙ P(B),
P(∩Ai) = ∏P(Ai)
Для

произвольных событий
P(AB) = P(A)∙ P(B ׀ A),
P(A1∩A2∩A3…∩An) =
= P(A1)∙P(A2׀A1)∙P(A3 ׀ A1A2)…P(An ׀ A1…An-1)

Слайд 12 Примеры:

Из 25 билетов, студент знает 20 билетов. Какова

Примеры:Из 25 билетов, студент знает 20 билетов. Какова вероятность того, что

вероятность того, что студент ответит на 3 вопроса?

Студент знает

половину билетов какая вероятность того, что он ответит на три вопроса?


Студент знает половину материала. Вопросы задаются случайным образом по всему курсу. Какова вероятность ответить на три вопроса?




Слайд 13 Примеры
Студент сдает три экзамена. Ai – сдан i

ПримерыСтудент сдает три экзамена. Ai – сдан i экзамен. Представить в

экзамен. Представить в виде суммы, произведения следующие события:
А –

все три экзамена сданы
В – все три экзамена не сданы
С – первый и второй не сдан
D – хотя бы один сдан
E – хотя бы один не сдан
G – только 3-ий сдан
F – не менее двух сдано


H – не более одного сдано





  • Имя файла: teoremy-slozheniya-i-umnozheniya-veroyatnostey.pptx
  • Количество просмотров: 156
  • Количество скачиваний: 0