, если существует такое движение (не тождественное), переводящее эту
фигуру в себя. Например, фигура обладает поворотной симметрией , если она переходит в себя некоторым поворотом.
Рассмотрим симметрию некоторых фигур:
1. Отрезок имеет две оси симметрии (серединный перпендикуляр и прямая, содержащая этот отрезок) и центр симметрии (середина).
2. Треугольник общего вида не имеет осей или центров симметрии, он несимметричен. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии: серединный перпендикуляр к основанию.
3. Равносторонний треугольник имеет три оси симметрии (серединные перпендикуляры к сторонам) и поворотную симметрию относительно центра с углом поворота 120 ° .
4.У любого правильного n-угольника есть n осей симметрии, все они проходят через его центр. Он также имеет поворотную симметрию относительно центра с углом поворота
При четном n одни оси симметрии проходят через противоположные вершины, другие - через середины противоположных сторон.
При нечетном n каждая ось проходит через вершину и середину противополжной стороны.
Центр правильного многоугольника с четным числом сторон является его центром симметрии. У правильного многоугольника с нечетным числом сторон центра симметрии нет.
Любая прямая, проходящая через центр окружности является ее осью симметрии, окружность также обладает поворотной симметрией, причем угол поворота может быть любым.