Слайд 2
Положения клеточной теории:
Немецкие ботаник Шлейдан и физиолог Шванн
создали клеточную теорию:
Клетка является структурно-функционнальной единицей, а также единицей
развития всех живых организмов.
Клеткам присуще мембранное строение.
Ядро - главная составная часть клетки.
Клетки размножаются только делением.
Клеточное строение организма - свидетельство того, что растения и животные имеют единое происхождение.
Слайд 3
Общие сведения
Химический состав клеток растений и животных весьма
сходен, что говорит о единстве их происхождения.
В клетках обнаружено более 80 химических элементов, однако только в отношении 27 из них известна физиологическая роль.
Макроэлементы: O, C, N, H. 98%
Микроэлементы: K, P, S, Ca, Mg, Cl, Na. 1,9%
Ультрамикроэлементы: Cu, I, Zn, Co, Br. 0 ,01%
Слайд 4
Неорганические соединения
Самое распространенное неорганическое соединение в клетках живых
организмов – вода.
Она поступает в организм из
внешней среды; у животных, кроме того, может образовываться при расщеплении жиров, белков, углеводов. Вода находится в цитоплазме и её органеллах, вакуолях, ядре, межклетниках.
Функции:
1. Растворитель
2. Транспорт веществ
3. Создание среды для химических реакций
4. Участие в образовании клеточных структур (цитоплазма)
Слайд 5
Неорганические соединения
Минеральные соли в определенных концентрациях необходимы для
нормальной жизнедеятельности клеток.
Например, нерастворимые соли
кальция и фосфора обеспечивают прочность костной ткани.
Содержание катионов и анионов в клетке и окружающей её среде (плазме крови, межклеточном веществе) различно благодаря
полупроницаемости мембраны.
Слайд 6
Органические соединения:
1. Углеводы
Это органические соединения, в состав
которых входят водород (Н), углерод (С) и кислород (О).
Углеводы образуются из воды (Н2О) и углекислого газа
(СО2) в процессе фотосинтеза.
Фруктоза и глюкоза постоянно присутствуют в клетках
плодов растений, придавая им сладкий вкус.
Функции:
1. Энергетическая (при распаде 1 г глюкозы освобождается 17,6 кДж энергии)
2. Структурная (хитин в скелете насекомых и
в стенке клеток грибов)
3. Запасающая (крахмал в растительных
клетках, гликоген – в животных)
Слайд 7
2. Липиды
Группа жироподобных органических соединений, нерастворимых в воде,
но хорошо растворимых в неполярных органических растворителях (бензоле, бензине
и т.д.).
Липопротеиды, гликолипиды, фосфолипиды.
Жиры – один из классов липидов, сложные эфиры глицерина и жирных кислот. В клетках содержится от 1 до 5% жиров.
Функции:
1. Энергетическая (при окислении 1 г жира выделяется 38,9 кДж энергии)
2. Структурная (фосфолипиды – основный
элементы мембран клетки)
3. Защитная (термоизоляция)
Слайд 8
3. Белки
Это биополимеры, мономерами которых являются аминокислоты.
В строении молекулы белка различают первичную структуру
– последовательность аминокислотных остатков; вторичную – это спиральная структура, которая удерживается множеством водородных связей. Третичная структура белковой молекулы – это пространственная конфигурация, напоминающая компактную глобулу. Она поддерживается ионными, водородными и дисульфидными связями, а также гидрофобным взаимодействием. Четвертичная структура образуется при
взаимодействии нескольких глобул (например,
молекула гемоглобина состоит из четырех таких
субъединиц).
Утрата белковой молекулой своей природной
структуры называется денатурацией.
Слайд 9
Нуклеиновые кислоты
Нуклеиновые кислоты обеспечивают хранение и передачу наследственной
(генетической) информации в живых организмах.
ДНК (дезоксирибонуклеиновая кислота) –
это молекула, состоящая из двух спирально закрученных полинуклеотидных цепей. Мономером ДНК является дезоксирибонуклеотид,
состоящий из азотистого основания (аденина (А),
цитозина (Ц), тимина (Т) или гуанина (Г)),
пентозы (дезоксирибозы) и фосфата.
РНК (рибонуклеиновая кислота) – это молекула, состоящая из одной цепи нуклеотидов. Рибонуклеотид состоит из одного из четырех азотистых оснований, но вместо тимина (Т) в РНК урацил (У), а вместо дезоксирибозы – рибоза.