Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему к уроку по физике в 10 классе на тему: Равномерное и равноускоренное движение.

Содержание

I. F(X)=AX2+BX+Ca>0,D≥0,X00. a
Движение – жизнь! Движение в графиках. I. F(X)=AX2+BX+Ca>0,D≥0,X00. 	a М- точка на оси абсцисс.Чтобы корни квадратного трехчлена были больше числа М,M< a × f(M)0,f(M)< 0.a< 0, f(M)>0.f(M)x1x2х1х2III. F(X)=AX2+BX+CЗадача IV. F(X)=AX2+BX+CYYXX00a>0,D≥0,X0 Є(M,N),f(M)>0,f(N)>0a< 0,D≥ 0,X0 Є(M,N),f(M)< 0,f(N)< 0М и N - точки V. F(X)=AX2+BX+Ca*f(M)0,f(N)>0.Задача При каких а один корень уравнения ах2+х+1=0 больше 2, а другой меньше 2?Решение.Чтобы выполнялось условие х1 Решение   Коэффициент при х2 положителен(a>0). Чтобы х1 При каких а один корень уравнения ах2+х+1=0 меньше 0, а второй корень Задача  Паровоз движется со скоростью 36 км/ч.   Какое расстояние 231145672346578S,м0231145672346578t,сυ, м/c0Тело находится в покое.Графики зависимости пути от времени, скорости от времениS = 0υ = 0t,сt,с 23114567234657802311456723465780Тело движется равномерно.Графики зависимости пути от времени, скорости от времениS,мt,сt,сυ, м/cS=υt υ=S/t υ =6м/3с=2м/с 0246810S,м3691215t,c  Дан график движения тела. Каков вид этого движения? Чему равна х1=-270+12t – движение грузового автомобиля,  х2=-1,5t – движение пешехода. Вопрос: с Решениеx1=-270+12tx2=-1.5tVавт-?Vпеш-?xвстречи -?tвстречи -?Vавт=12 м/с - вправоVпеш=1,5 м/с - влевоx=x0+vt (Знак говорит о 2) х1=5t – движение одного велосипедиста, х2=150-10t - движение второго велосипедиста. Задание: X1=5tx2=150-10tОтвет: через 10 с после начала выезда в точке с координатой 50м SxSxttOO  График зависимости проекции вектора перемещения тела от времени (рис. 6), xt-x0OГрафик зависимости координаты тела, движущегося с постоянным ускорением, от времени (рис. 7).Рис. 7 Уравнение движения материальной точки имеет вид х=-0,2t2. Какое это движение? Найти координату Дано:Решение:t=5c x-? s-?х=-0,2*52=-5 мs=|x-х0|=5 мОтвет: движение равноускоренное; координата точки через заданное время 2) Уравнения движения по шоссе велосипедиста, бензовоза и пешехода имеют вид: x1=-0.4t2, Координаты в момент начала наблюдения:Моменту начала наблюдения соответствует t=0x1=-0.4*0=0 м; x2=400-0.6*0=400 м; x3=-300 м II. Проекции начальной скорости и ускорения:v0x=0, ax=-0.8 м/с2; v0x=-0.6 м/с, ах=0,3 м/с2; vox=0, ax=0 III. Направление и вид движения:Вид уравнения определяет вид движенияx1=-0.4t2  влево, равноускоренное; 3) Движения двух автомобилей по шоссе заданы уравнениями х1=2t+0.2t2 и х2=80-4t. Описать Решениех1=2t+0.2t2 х2=80-4tа) t-?   x-?б)x2(5)-x1(5)-?в)x1(t2)-? если x2=0По виду самих уравнений определяем, Многие школьные предметы перекликаются друг с другом, например, такие как физика и ИСПОЛЬЗУЕМЫЕ ИСТОЧНИКИhttp://shofer-ok.at.uahttp://www.emc.spb.ruhttp://www.curator.ruhttp://edu.1c.ruhttp://repetitor.1c.ruhttp://www.globus-kniga.ruhttp://www.emc.spb.ru«Первое сентября», 2007 - 2009 portfolio.1september.ru
Слайды презентации

Слайд 2 I. F(X)=AX2+BX+C
a>0,
D≥0,
X00.


a

I. F(X)=AX2+BX+Ca>0,D≥0,X00. 	a

корни квадратного трехчлена были меньше числа М,
Х1< X2< М

, необходимо и достаточно, чтобы выполнялись условия:

0

0



a< 0,
f(M)< 0.

a>0,
f(M)>0.



Слайд 3 М- точка на оси абсцисс.
Чтобы корни квадратного трехчлена

М- точка на оси абсцисс.Чтобы корни квадратного трехчлена были больше числа

были больше числа М,
M< X1< X2, необходимо и достаточно,

чтобы выполнялись условия:


M

Y


x

1

x2

x0


f(M)

X


M

Y


x

1

x2

x0


f(M)

X

a< 0,
D≥0,
X0>M,
f(M)< 0.

a>0,
D≥0,
X0>M,
f(M)>0.

Эти два случая можно объединить:

D≥0,
X0>M,
a×f(M)>0, здесь f(M)=aM2+bM+c.



0

0





II. F(X)=AX2+BX+C


Слайд 4
a × f(M)

a × f(M)0,f(M)< 0.a< 0, f(M)>0.f(M)x1x2х1х2III. F(X)=AX2+BX+CЗадача

абсцисс.
Чтобы один из корней квадратного трехчлена был больше числа

М, а другой меньше M , X1< М < X2, необходимо и достаточно, чтобы выполнялись условия:



X

Y


м

м

о

f(M)

a>0,
f(M)< 0.

a< 0, f(M)>0.

f(M)

x1

x2




х1

х2



III. F(X)=AX2+BX+C

Задача


Слайд 5 IV. F(X)=AX2+BX+C
Y
Y
X
X
0
0
a>0,
D≥0,
X0 Є(M,N),
f(M)>0,
f(N)>0
a< 0,
D≥ 0,
X0 Є(M,N),
f(M)< 0,
f(N)< 0




М

IV. F(X)=AX2+BX+CYYXX00a>0,D≥0,X0 Є(M,N),f(M)>0,f(N)>0a< 0,D≥ 0,X0 Є(M,N),f(M)< 0,f(N)< 0М и N -

и N - точки на оси абсцисс.
Чтобы оба корня

квадратного трехчлена лежали на интервале (М,N),
необходимо и достаточно, чтобы выполнялись условия:

м

м

x1

x2

x2

x1

N

N



x0

x0

f(N)

f(M)

f(M)

f(N)

Задача


Слайд 6 V. F(X)=AX2+BX+C
a*f(M)

V. F(X)=AX2+BX+Ca*f(M)0,f(N)>0.Задача

абсцисс.
Чтобы отрезок [М,N] целиком лежал на интервале (x1;х2), необходимо,

чтобы выполнялись условия:

a>0,
f(M)< 0,
f(N)< 0.

a< 0,
f(M)>0,
f(N)>0.

Задача


Слайд 7 При каких а один корень уравнения ах2+х+1=0 больше

При каких а один корень уравнения ах2+х+1=0 больше 2, а другой меньше 2?Решение.Чтобы выполнялось условие х1

2,
а другой меньше 2?
Решение.
Чтобы выполнялось условие х1

и достаточно, чтобы ахf(2)<0, здесь f(2)=4a+2+1=4a+3
(смотри сюда - СЛУЧАЙ III ).
Решим неравенство a(4a+3)<0 методом интервалов:

-3/4

0

а

+

-

+

-3/4

Ответ: - 3/4

ЗАДАЧА


Слайд 8 Решение
Коэффициент при

Решение  Коэффициент при х2 положителен(a>0). Чтобы х1 и

х2 положителен(a>0). Чтобы х1 и х2 принадлежали интервалу (0;3)

необходимо, чтобы выполнялось условие

При каких а оба корня уравнения х2-ах+2=0 лежат на интервале (0;3)?

D≥0,
X0 Є(M,N),
f(M)>0,
f(N)>0.



а2-8 ≥ 0,
а/2 Є (0;3),
9-3а+2 > 0

здесь D=a2-8, х0=а/2 и f(3)=9-3a+2 (смотри сюда – СЛУЧАЙ здесь D=a2-8, х0=а/2 и f(3)=9-3a+2 (смотри сюда – СЛУЧАЙ IV).
Решим получившуюся систему

<=>


|а|≥√8,
а Є (0;6),
а < 11/3

<=>


а ≥ 2√2,
а Є (0;6),
а < 11/3.

Ответ: 2√2 ≤ a ≤ 11/3


Слайд 9 При каких а один корень уравнения ах2+х+1=0 меньше

При каких а один корень уравнения ах2+х+1=0 меньше 0, а второй

0, а второй корень больше 3?
Решение
Коэффициент

при х2 положителен (a>0). Чтобы х1 был меньше 0, а х2 больше 3, необходимо, чтобы выполнялось условие


a*f(0)<0,
a*f(3)<0.

a*1<0,
a*(9a+4)<0


<=>

<=>

<=>




a*1<0,
a*(9a+4)<0

a<0,
9a2+4a<0

<=>


a<0,

+

-

+

X

-4/9

0

<=>

f(0)=1

f(3)=9a+4

a<0,
-4/9

-4/9

<=>

(смотри сюда –
СЛУЧАЙ СЛУЧАЙ V)

Ответ: -4/9


Слайд 11 Задача
Паровоз движется со скоростью 36 км/ч.

Задача Паровоз движется со скоростью 36 км/ч.  Какое расстояние он


Какое расстояние он пройдёт за 10 минут?



Ответ:

6 000 м.

Слайд 12 2
3
1
1
4
5
6
7
2
3
4
6
5
7
8
S,м
0
2
3
1
1
4
5
6
7
2
3
4
6
5
7
8
t,с
υ, м/c
0
Тело находится в покое.
Графики зависимости пути от

231145672346578S,м0231145672346578t,сυ, м/c0Тело находится в покое.Графики зависимости пути от времени, скорости от времениS = 0υ = 0t,сt,с

времени,
скорости от времени


S = 0
υ = 0
t,с
t,с


Слайд 13 2
3
1
1
4
5
6
7
2
3
4
6
5
7
8
0
2
3
1
1
4
5
6
7
2
3
4
6
5
7
8
0
Тело движется равномерно.
Графики зависимости пути от времени,
скорости

23114567234657802311456723465780Тело движется равномерно.Графики зависимости пути от времени, скорости от времениS,мt,сt,сυ, м/cS=υt υ=S/t υ =6м/3с=2м/с

от времени




S,м
t,с
t,с
υ, м/c
S=υt
υ=S/t
υ =6м/3с=2м/с


Слайд 14

0
2
4
6
8
10
S,м
3
6
9
12
15
t,c

Дан график движения тела. Каков вид

0246810S,м3691215t,c Дан график движения тела. Каков вид этого движения? Чему равна

этого движения? Чему равна скорость движения тела? Каков путь,

пройденный телом за 8 секунд?
Постройте график скорости тела для данного движения.

Задача



Слайд 15 х1=-270+12t – движение грузового автомобиля,
х2=-1,5t

х1=-270+12t – движение грузового автомобиля,  х2=-1,5t – движение пешехода. Вопрос:

– движение пешехода.
Вопрос: с какими скоростями и в

каком направлении они двигались? Когда и где они встретились?

Слайд 16 Решение
x1=-270+12t
x2=-1.5t
Vавт-?
Vпеш-?
xвстречи -?
tвстречи -?
Vавт=12 м/с - вправо
Vпеш=1,5 м/с -

Решениеx1=-270+12tx2=-1.5tVавт-?Vпеш-?xвстречи -?tвстречи -?Vавт=12 м/с - вправоVпеш=1,5 м/с - влевоx=x0+vt (Знак говорит

влево
x=x0+vt

(Знак говорит о направлении!)
Когда они встретятся их

координаты x будут
равны, поэтому:

-270+12t=- 1.5t

=>

t=20c

Далее подставляем в одно из уравнений найденное t, получаем:

-1.5*20=-30м

Ответ: через 20 с в точке с координатой -30м

X,м

-200

-100

0

-300


Слайд 17 2) х1=5t – движение одного велосипедиста,
х2=150-10t -

2) х1=5t – движение одного велосипедиста, х2=150-10t - движение второго велосипедиста.

движение второго велосипедиста.
Задание: построить графики зависимости х(t). Найти

время и место встречи.

Слайд 18 X1=5t

x2=150-10t
Ответ: через 10 с после начала выезда в

X1=5tx2=150-10tОтвет: через 10 с после начала выезда в точке с координатой 50м

точке с координатой 50м


Слайд 20





Sx
Sx
t
t


O
O


График зависимости проекции вектора перемещения тела

SxSxttOO График зависимости проекции вектора перемещения тела от времени (рис. 6),

от времени (рис. 6), если тело движется с постоянным

ускорением.

Рис. 6


Слайд 21



x
t
-x0
O

График зависимости координаты тела, движущегося с постоянным ускорением,

xt-x0OГрафик зависимости координаты тела, движущегося с постоянным ускорением, от времени (рис. 7).Рис. 7

от времени (рис. 7).
Рис. 7


Слайд 22 Уравнение движения материальной точки имеет вид х=-0,2t2. Какое

Уравнение движения материальной точки имеет вид х=-0,2t2. Какое это движение? Найти

это движение?
Найти координату точки через 5 с и

путь, пройденный ею за это время.
Построить график зависимости х от t.

Слайд 23 Дано:
Решение:
t=5c
x-?
s-?
х=-0,2*52=-5 м
s=|x-х0|=5 м
Ответ: движение равноускоренное; координата точки

Дано:Решение:t=5c x-? s-?х=-0,2*52=-5 мs=|x-х0|=5 мОтвет: движение равноускоренное; координата точки через заданное

через заданное время -5 м, пройденный путь 5 м
х=-0,2t2
Классический

вид уравнения x=x0 + v0x*t + g*t2 / 2 у нас х0=0, v0=0 поэтому наше уравнение принимает вид x=g*t2 / 2



Слайд 24 2) Уравнения движения по шоссе велосипедиста, бензовоза и

2) Уравнения движения по шоссе велосипедиста, бензовоза и пешехода имеют вид:

пешехода имеют вид: x1=-0.4t2, x2=400-0.6t и x3=-300 соответственно. Найти

для каждого из тел: координату в момент начала наблюдения, проекции начальной скорости и ускорения, а также направление и вид движения.

Слайд 25 Координаты в момент начала наблюдения:

Моменту начала наблюдения соответствует

Координаты в момент начала наблюдения:Моменту начала наблюдения соответствует t=0x1=-0.4*0=0 м; x2=400-0.6*0=400 м; x3=-300 м

t=0

x1=-0.4*0=0 м;

x2=400-0.6*0=400 м;

x3=-300 м


Слайд 26 II. Проекции начальной скорости и ускорения:
v0x=0, ax=-0.8 м/с2;

II. Проекции начальной скорости и ускорения:v0x=0, ax=-0.8 м/с2; v0x=-0.6 м/с, ах=0,3 м/с2; vox=0, ax=0


v0x=-0.6 м/с, ах=0,3 м/с2;
vox=0, ax=0


Слайд 27 III. Направление и вид движения:
Вид уравнения определяет вид

III. Направление и вид движения:Вид уравнения определяет вид движенияx1=-0.4t2 влево, равноускоренное; x2=400-0.6t влево, равномерное; x3=-300 покой

движения

x1=-0.4t2 влево, равноускоренное;

x2=400-0.6t влево, равномерное;

x3=-300

покой

Слайд 28 3) Движения двух автомобилей по шоссе заданы уравнениями

3) Движения двух автомобилей по шоссе заданы уравнениями х1=2t+0.2t2 и х2=80-4t.

х1=2t+0.2t2 и х2=80-4t. Описать картину движения. Найти: а) время

и место встречи автомобилей; б) расстояние между ними через 5 с от начала отсчета времени; в) координату первого автомобиля в тот момент времени, когда второй находился в начале отсчета.

Слайд 29 Решение
х1=2t+0.2t2
х2=80-4t
а) t-? x-?
б)x2(5)-x1(5)-?
в)x1(t2)-? если x2=0
По виду самих

Решениех1=2t+0.2t2 х2=80-4tа) t-?  x-?б)x2(5)-x1(5)-?в)x1(t2)-? если x2=0По виду самих уравнений определяем,

уравнений определяем, что
первый движется ускоренно, а второй
равномерно.
а)

поскольку во время встречи координаты обоих автомобилей будут равны х1=х2 2t+0.2t2=80-4t 0.2t2+6t-80=0 t=10 c теперь в одно из уравнений можно подставить
найденное только что время t x=80-4*10=40 м

б) х1=2*5+0.2*52=15 м х2=80-4*5=60 м х2 - х1=60-15=45 м

в) х2=0 => 0=80-4*t => t=20 х1=2*20+0,2*202=120 м


Слайд 30 Многие школьные предметы перекликаются друг с другом, например,

Многие школьные предметы перекликаются друг с другом, например, такие как физика

такие как физика и математика. Именно поэтому важно знать

как решается то или иное уравнение в математике, что бы не допустить ошибки в физике.

  • Имя файла: prezentatsiya-k-uroku-po-fizike-v-10-klasse-na-temu-ravnomernoe-i-ravnouskorennoe-dvizhenie.pptx
  • Количество просмотров: 192
  • Количество скачиваний: 1