Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Анализ сложной линейной электрической цепи постоянного тока

Содержание

Содержание1. Основные теоретические сведения: первый и второй законы Кирхгофа, метод контурных токов, баланс мощностей.2. Практическое задание: расчет сложной линейной цепи постоянного тока.3. Математическая поддержка: решение систем уравнений.4. Задачи для самостоятельного решения.Продолжить
Анализ сложной линейной электрической цепи постоянного тока Начать работу Содержание1. Основные теоретические сведения: первый и второй законы Кирхгофа, метод контурных токов, Основные теоретические сведенияЭлектрической цепью называют совокупность тел и сред, образующих замкнутые пути Элементами электрической цепи являются источники электрической энергии, активные и реактивные сопротивления. Связи Для описания топологических свойств электрической цепи используются топологические понятия, основными из которых Узлом электрической цепи называют место (точку) соединения трех и более элементов.Графически такое Ветвью называют совокупность связанных элементов электрической цепи между двумя узлами.Ветвь по определению Контуром (замкнутым контуром) называют совокупность ветвей, образующих путь, при перемещении вдоль которого Законы Кирхгофа являются одной из форм закона сохранения энергии и потому относятся Первый закон КирхгофаАлгебраическая сумма токов в узле электрической цепи равна нулю:При этом Второй закон КирхгофаАлгебраическая сумма падений напряжений в ветвях любого замкнутого контура равна Анализ сложной цепи с применением законов КирхгофаСложной будем называть разветвленную электрическую цепь, Будем считать заданными параметры источников ЭДС, источников тока и сопротивления приемников. Неизвестными Введем обозначения: k – число узлов схемыm – число ветвей, не содержащих Число независимых уравнений, составляемых по второму закону Кирхгофа: Таким образом, порядок анализа сложной Метод контурных токов Введем новые условные (фиктивные) неизвестные, называемые «контурными токами».	«Контурный» ток Пример выбора контурных токов показан на рисунке. Направления контурных токов выбираются произвольно. Уравнение для К-го контура любой схемы по методу контурных токов записывается как:Здесь При использовании данного метода уравнения составляются только по второму закону Кирхгофа.	Метод контурных Система уравнений по методу контурных токов сравнительно легко решается с помощью определителей.После Баланс мощностейУравнение энергетического баланса: Σ RI2 = Σ EIПроизведение записываются с «+», Практическое заданиеДано: R1=1 ОМ, R2=0,5 Ом, R3=0,4 Ом, R4=R5=R6=3 Ом, Е1=120 В, 1. Составление уравнений по законам КирхгофаВ рассматриваемом примере:число узлов k = 4, Уравнения по первому закону Кирхгофа имеют следующий вид:для узла 1: Решая полученную систему из 6 уравнений (повторить решение систем уравнений), получаем значения 2. Определение токов во всех ветвях цепи методом контурных токовВводим новые неизвестные Подставляя известные значения ЭДС и сопротивлений, решаем систему из трех уравнений.Результат:I11 =6,8 3. Проверка баланса мощностейR1I12+R2I22+R3I32+R4I42+R5I52+R6I62= = E1I1+E2I2+E3I3Поставляем значения и определяем:2365,56 = 2360,4Продолжить Задачи для самостоятельного решенияАнализ линейной электрической цепи постоянного тока1. Составить уравнения по 5.6.7.8.3.4. 11.12.13.14.9.10. 17.18.19.20.15.16. 23.24.25.26.21.22. 29.30.27.28. Таблица значений Закончить работу Решение систем уравнений со многими неизвестнымиВ данной задаче необходимо решить систему из Сначала подставим в систему известные значения ЭДС и сопротивлений:-I1-I2-I3=0I2+I4+I5=0I1-I4+I6=0I1 – 0,5I2 + I1=-I2-I3I2+I4+I5=0(-I2-I3) -I4+I6=0(-I2-I3) – 0,5I2 + 3I4 = 120 – 60 - 0,5 Рассмотрим отдельно третье уравнение, раскроем скобки, приведем подобные слагаемые и выразим одно Преобразуем пятое уравнение:- 0,5 I2 + 0,4 I3 + 3I5 = - Преобразуем шестое уравнение:- 3(-I2-I5) + 3I5 – 3(I3 - I5) = 03I2 Таким образом, определилась первая неизвестная величина: I2 = - 30,9 А.Теперь идем
Слайды презентации

Слайд 2 Содержание
1. Основные теоретические сведения: первый и второй законы

Содержание1. Основные теоретические сведения: первый и второй законы Кирхгофа, метод контурных

Кирхгофа, метод контурных токов, баланс мощностей.
2. Практическое задание: расчет

сложной линейной цепи постоянного тока.
3. Математическая поддержка: решение систем уравнений.
4. Задачи для самостоятельного решения.

Продолжить


Слайд 3 Основные теоретические сведения
Электрической цепью называют совокупность тел и

Основные теоретические сведенияЭлектрической цепью называют совокупность тел и сред, образующих замкнутые

сред, образующих замкнутые пути для протекания электрического тока.
Обычно физические

объекты и среду, в которой протекает электрический ток, упрощают до условных элементов и связей между ними. Тогда определение цепи можно сформулировать как совокупность различных элементов, объединенных друг с другом соединениями или связями, по которым может протекать электрический ток.

Продолжить


Слайд 4 Элементами электрической цепи являются источники электрической энергии, активные

Элементами электрической цепи являются источники электрической энергии, активные и реактивные сопротивления.

и реактивные сопротивления.
Связи в электрической цепи изображаются линиями

и по смыслу соответствуют идеальным проводникам с нулевым сопротивлением.
Связи элементов электрической цепи обладают топологическими свойствами, т.е. они не изменяются при любых преобразованиях, производимых без разрыва связей.

Продолжить


Слайд 5 Для описания топологических свойств электрической цепи используются топологические

Для описания топологических свойств электрической цепи используются топологические понятия, основными из

понятия, основными из которых являются узел, ветвь и контур.

Пример такого преобразования показан на рис. 1.

Продолжить


Слайд 6 Узлом электрической цепи называют место (точку) соединения трех

Узлом электрической цепи называют место (точку) соединения трех и более элементов.Графически

и более элементов.
Графически такое соединение может изображаться различными способами.


Обратите внимание на точку в месте пересечения линий схемы. Если она отсутствует, то это означает отсутствие соединения. Точка может не ставиться там, где при пересечении линия заканчивается (рисунок а)).

Продолжить


Слайд 7 Ветвью называют совокупность связанных элементов электрической цепи между

Ветвью называют совокупность связанных элементов электрической цепи между двумя узлами.Ветвь по

двумя узлами.
Ветвь по определению содержит элементы, поэтому вертикальные связи

рис.2 а) и б) ветвями не являются. Не является ветвью и диагональная связь рис.1а).

Продолжить


Слайд 8 Контуром (замкнутым контуром) называют совокупность ветвей, образующих путь,

Контуром (замкнутым контуром) называют совокупность ветвей, образующих путь, при перемещении вдоль

при перемещении вдоль которого мы можем вернуться в исходную

точку, не проходя более одного раза по каждой ветви и по каждому узлу.
По определению различные контуры электрической цепи должны отличаться друг от друга по крайней мере одной ветвью.
Количество контуров, которые могут быть образованы для данной электрической цепи ограничено и определено.

Продолжить


Слайд 9 Законы Кирхгофа являются одной из форм закона сохранения

Законы Кирхгофа являются одной из форм закона сохранения энергии и потому

энергии и потому относятся к фундаментальным законам природы.
Первый закон

Кирхгофа является следствием принципа непрерывности электрического тока, в соответствии с которым суммарный поток зарядов через любую замкнутую поверхность равен нулю, т.е. количество зарядов выходящих через эту поверхность должно быть равно количеству входящих зарядов. Основание этого принципа очевидно, т.к. при нарушении его электрические заряды внутри поверхности должны были бы либо исчезать, либо возникать без видимых причин.

Продолжить


Слайд 10 Первый закон Кирхгофа
Алгебраическая сумма токов в узле электрической

Первый закон КирхгофаАлгебраическая сумма токов в узле электрической цепи равна нулю:При

цепи равна нулю:


При этом токи, направленные к узлу, записываются

со знаком «плюс», а токи, направленные от узла, - со знаком «минус».

-I1+ I2+ I3- I4 = 0

Продолжить


Слайд 11 Второй закон Кирхгофа
Алгебраическая сумма падений напряжений в ветвях

Второй закон КирхгофаАлгебраическая сумма падений напряжений в ветвях любого замкнутого контура

любого замкнутого контура равна алгебраической сумме ЭДС, действующих в

этом контуре,:


Направление обхода контура выбираем произвольно (в примере против часовой стрелки).

I1R1+I2R2-I3R3-I4R4=
=E1-E2

Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

Продолжить


Слайд 12 Анализ сложной цепи с применением законов Кирхгофа
Сложной будем

Анализ сложной цепи с применением законов КирхгофаСложной будем называть разветвленную электрическую

называть разветвленную электрическую цепь, содержащую несколько источников электрической энергии.

Продолжить


Слайд 13 Будем считать заданными параметры источников ЭДС, источников тока

Будем считать заданными параметры источников ЭДС, источников тока и сопротивления приемников.

и сопротивления приемников. Неизвестными являются токи ветвей, не содержащих

источников тока.

Условными положительными направлениями токов задаемся произвольно.


Продолжить


Слайд 14
Введем обозначения:
k – число узлов схемы
m –

Введем обозначения: k – число узлов схемыm – число ветвей, не

число ветвей, не содержащих источников тока
В рассматриваемом примере k

= 4, m = 5.
Расчет и анализ сложной электрической цепи основан на уравнениях, составляемых по 1 и 2 законам Кирхгофа, в количестве, достаточном для решения системы. Все уравнения в системе должны быть независимыми.
Число независимых уравнений, составляемых по 1 закону Кирхгофа, на единицу меньше числа узлов:


Продолжить


Слайд 15 Число независимых уравнений, составляемых по второму закону Кирхгофа:

Число независимых уравнений, составляемых по второму закону Кирхгофа:



Независимость уравнений по

второму закону Кирхгофа будет обеспечена, если контуры выбирать таким образом, чтобы каждый последующий контур отличался от предыдущего хотя бы одной новой ветвью.

Для контура, содержащего ветвь с источником тока, уравнение не составляется.

Направление обхода – произвольное.

Продолжить


Слайд 16

Таким

Таким образом, порядок анализа сложной цепи с

образом, порядок анализа сложной цепи с применением законов Кирхгофа

следующий:

1) выбирают произвольно положительные условные направления токов в ветвях;
2) составляют (k-1) независимых уравнений по первому закону Кирхгофа.
3) выбирают произвольно направления обхода независимых контуров,
4) составляют m-(k-1) независимых уравнений по второму закону Кирхгофа,
5) решают совместно полученную систему уравнений.

Продолжить


Слайд 17 Метод контурных токов
Введем новые условные (фиктивные) неизвестные,

Метод контурных токов Введем новые условные (фиктивные) неизвестные, называемые «контурными токами».	«Контурный»

называемые «контурными токами».
«Контурный» ток замыкается по соответствующему контуру.
Составляются

уравнения по 2-му закону Кирхгофа. Для того, чтобы уравнения были независимыми, каждый последующий контур должен отличаться от предыдущих хотя бы одной новой ветвью.
Для контура, содержащего ветвь с источником тока, уравнение не составляется.

Продолжить


Слайд 18 Пример выбора контурных токов показан на рисунке. Направления

Пример выбора контурных токов показан на рисунке. Направления контурных токов выбираются

контурных токов выбираются произвольно. Ток источника тока J считается

известным контурным током.


Продолжить


Слайд 19 Уравнение для К-го контура любой схемы по методу

Уравнение для К-го контура любой схемы по методу контурных токов записывается

контурных токов записывается как:
Здесь I11, I22, Ipp, Ikk, Ill,…

- контурные токи 1-го, 2-го, р-го, к-го, l-го контуров,
Ekk - алгебраическая сумма ЭДС всех ветвей, составляющих к-ый контур,
Rkk - арифметическая сумма сопротивлений ветвей, составляющих рассматриваемый к-ый контур. Значения Rkk всегда положительны.
Rk1, Rk2, …, Rkp, Rkl - сопротивления ветвей, смежных между соответственно к-ым и первым, к-ым и вторым, к-ым и l-ым и т.д. контурами,
Rkp>0, если направления токов Ipp, Ikk через рассматриваемую ветвь совпадают. В противном случае Rkp<0.

Продолжить


Слайд 20 При использовании данного метода уравнения составляются только по

При использовании данного метода уравнения составляются только по второму закону Кирхгофа.	Метод

второму закону Кирхгофа.
Метод контурных токов позволяет сократить число совместно

решаемых в системе уравнений до


При этом учитывается, что падение напряжения на отдельных участках цепи создаются совместным действием контурных токов, проходящих через данные участки.

Продолжить


Слайд 21 Система уравнений по методу контурных токов сравнительно легко

Система уравнений по методу контурных токов сравнительно легко решается с помощью

решается с помощью определителей.

После решения системы и определения контурных

токов I11, I22, I33 переходим к определению токов отдельных ветвей.

Ток какой-либо ветви определяется как алгебраическая сумма контурных токов через данную ветвь. Со знаком «плюс» будем записывать контурный ток, совпадающий по направлению с током данной ветви.

Продолжить


Слайд 22 Баланс мощностей
Уравнение энергетического баланса:

Σ RI2 = Σ

Баланс мощностейУравнение энергетического баланса: Σ RI2 = Σ EIПроизведение записываются с

EI

Произведение записываются с «+», если направления ЭДС и тока

совпадают, и с «-», если направления противоположны.

Продолжить


Слайд 23 Практическое задание
Дано: R1=1 ОМ,
R2=0,5 Ом,
R3=0,4 Ом,

Практическое заданиеДано: R1=1 ОМ, R2=0,5 Ом, R3=0,4 Ом, R4=R5=R6=3 Ом, Е1=120


R4=R5=R6=3 Ом,
Е1=120 В,
Е2=60 В, Е3=140 В

1. Составить

уравнения по законам Кирхгофа;
2. Определить токи во всех ветвях цепи методом контурных токов;
3. Проверить баланс мощностей цепи.

Продолжить


Слайд 24 1. Составление уравнений по законам Кирхгофа
В рассматриваемом примере:
число

1. Составление уравнений по законам КирхгофаВ рассматриваемом примере:число узлов k =

узлов k = 4,
число ветвей m = 6;

число

уравнений по первому закону Кирхгофа:
4-1=3,
число уравнений по второму закону Кирхгофа:
6-(4-1)=3.

Произвольно выбираем положительные условные направления токов в ветвях и обход контура:

Продолжить


Слайд 25 Уравнения по первому закону Кирхгофа имеют следующий вид:
для

Уравнения по первому закону Кирхгофа имеют следующий вид:для узла 1:

узла 1:

-I1-I2-I3=0
для узла 2: I2+I4+I5=0
для узла 3: I1-I4+I6=0

Уравнения по второму закону Кирхгофа имеют вид:
для контура 1: I1R1 - I2R2 + I4R4 = E1 - E2
для контура 2: - I2R2 + I3R3 + I5R5 = - E2 + E3
для контура 3: - I4R4 + I5R5 - I6R6 = 0

Продолжить


Слайд 26 Решая полученную систему из 6 уравнений (повторить решение

Решая полученную систему из 6 уравнений (повторить решение систем уравнений), получаем

систем уравнений), получаем значения 6 неизвестных токов:
I1 = 6,3

А I2 = - 30,9 А
I3 = 24,6 А I4 = 12,6 А
I5 = 18,3 А I6 = 6,3 А

В результате решения значение второго тока оказалось отрицательным, значит действительное направление этого тока противоположно выбранному условному положительному направлению.

Продолжить


Слайд 27 2. Определение токов во всех ветвях цепи методом

2. Определение токов во всех ветвях цепи методом контурных токовВводим новые

контурных токов
Вводим новые неизвестные – контурные токи I11, I22,

I33 и составляем уравнения для данных контуров по второму закону Кирхгофа:

E1-E2=(R1+R2+R4)I11+R2I22-R4I33
-E2+E3=(R2+R3+R5)I22+R2I11+R5I33
0=(R4+R5+R6)I33-R4I11+R5I22

Продолжить


Слайд 28 Подставляя известные значения ЭДС и сопротивлений, решаем систему

Подставляя известные значения ЭДС и сопротивлений, решаем систему из трех уравнений.Результат:I11

из трех уравнений.

Результат:
I11 =6,8 А,
I22 = 24,36 А,
I33 =

-5,74 А

Определяем токи ветвей:
I1 = I11= 6,8 А I2= -I11-I22= -31,1 А
I3= I22= 24,36 А I4= I11-I33= 12,54 А
I5= I22+I33= 18,62 А I6= -I33= 5,74 А

Продолжить


Слайд 29 3. Проверка баланса мощностей
R1I12+R2I22+R3I32+R4I42+R5I52+R6I62= = E1I1+E2I2+E3I3

Поставляем значения и

3. Проверка баланса мощностейR1I12+R2I22+R3I32+R4I42+R5I52+R6I62= = E1I1+E2I2+E3I3Поставляем значения и определяем:2365,56 = 2360,4Продолжить

определяем:
2365,56 = 2360,4
Продолжить


Слайд 30 Задачи для самостоятельного решения
Анализ линейной электрической цепи постоянного

Задачи для самостоятельного решенияАнализ линейной электрической цепи постоянного тока1. Составить уравнения

тока
1. Составить уравнения по законам Кирхгофа.
2. Определить токи во

всех ветвях цепи методом контурных токов.
3. Проверить баланс мощностей цепи.

1.

2.


Слайд 31 5.

6.
7.
8.
3.
4.

5.6.7.8.3.4.

Слайд 32 11.

12.
13.
14.
9.
10.

11.12.13.14.9.10.

Слайд 33 17.

18.
19.
20.
15.
16.

17.18.19.20.15.16.

Слайд 34 23.

24.
25.
26.
21.
22.

23.24.25.26.21.22.

Слайд 35 29.

30.
27.
28.

29.30.27.28.

Слайд 36 Таблица значений

Таблица значений

Слайд 38 Закончить работу

Закончить работу

Слайд 39 Решение систем уравнений со многими неизвестными
В данной задаче

Решение систем уравнений со многими неизвестнымиВ данной задаче необходимо решить систему

необходимо решить систему из шести уравнений с шестью неизвестными.


Принцип решения системы - выражать из каждого уравнения какую-либо переменную и поставлять это выражение в последующие уравнения.

Главное– последовательность и аккуратность при решении.

Продолжить


Слайд 40 Сначала подставим в систему известные значения ЭДС и

Сначала подставим в систему известные значения ЭДС и сопротивлений:-I1-I2-I3=0I2+I4+I5=0I1-I4+I6=0I1 – 0,5I2

сопротивлений:
-I1-I2-I3=0
I2+I4+I5=0
I1-I4+I6=0
I1 – 0,5I2 + 3I4 = 120 – 60


- 0,5 I2 + 0,4 I3 + 3I5 = - 60 +140
- 3I4 + 3I5 - 3I6 = 0

Из первого уравнения выражаем переменную: I1=-I2-I3
И подставляем правую часть данного выражения во все последующие уравнения.

Продолжить


Слайд 41 I1=-I2-I3
I2+I4+I5=0
(-I2-I3) -I4+I6=0
(-I2-I3) – 0,5I2 + 3I4 = 120

I1=-I2-I3I2+I4+I5=0(-I2-I3) -I4+I6=0(-I2-I3) – 0,5I2 + 3I4 = 120 – 60 -

– 60
- 0,5 I2 + 0,4 I3 +

3I5 = - 60 +140
- 3I4 + 3I5 - 3I6 = 0
Из второго уравнения выражаем переменную: I4=-I2-I5
I1=-I2-I3
I4=-I2-I5
(-I2-I3) –(-I2-I5)+I6=0
(-I2-I3) – 0,5I2 + 3(-I2-I5) = 120 – 60
- 0,5 I2 + 0,4 I3 + 3I5 = - 60 +140
- 3(-I2-I5) + 3I5 - 3I6 = 0

Продолжить


Слайд 42 Рассмотрим отдельно третье уравнение, раскроем скобки, приведем подобные

Рассмотрим отдельно третье уравнение, раскроем скобки, приведем подобные слагаемые и выразим

слагаемые и выразим одно из неизвестных:
(-I2-I3) –(-I2-I5)+I6=0
-I2-I3+I2+I5+I6=0
-I3+I5+I6=0
I6= I3 -

I5

Также отдельно рассмотрим четвертое уравнение:
-I2-I3 – 0,5I2 + 3(-I2-I5) = 60
-I2-I3 – 0,5I2 - 3I2-3I5 = 60
- 4,5I2 - I3 -3I5 = 60
I3 = - 4,5I2 -3I5 - 60

Продолжить


Слайд 43 Преобразуем пятое уравнение:
- 0,5 I2 + 0,4 I3

Преобразуем пятое уравнение:- 0,5 I2 + 0,4 I3 + 3I5 =

+ 3I5 = - 60 +140
- 0,5 I2 +

0,4(- 4,5I2 -3I5 - 60) + 3I5 = 80
- 0,5 I2 – 1,8 I2 -1,2 I5 - 24 + 3 I5 = 80
- 2,3 I2 + 1,8 I5 = 80 + 24
I5 = (104 + 2,3 I2 ) / 1,8
I5 = 57,8 + 1,28 I2

Продолжить


Слайд 44 Преобразуем шестое уравнение:
- 3(-I2-I5) + 3I5 – 3(I3

Преобразуем шестое уравнение:- 3(-I2-I5) + 3I5 – 3(I3 - I5) =

- I5) = 0
3I2 + 3I5 + 3I5 –

3I3 + 3I5 = 0
3I2 – 3I3 + 9I5 = 0
3I2 – 3(- 4,5I2 -3I5 - 60) + 9I5 = 0
3I2 + 13,5 I2 + 9I5 + 180 + 9I5 = 0
16,5 I2 + 18 I5 + 180 = 0
16,5 I2 + 18 (57,8 + 1,28 I2) + 180 = 0
16,5 I2 + 1040,4 + 23,04 I2 + 180 = 0
39,54 I2 + 1220,4 = 0
I2 = - 30,9

Продолжить


  • Имя файла: analiz-slozhnoy-lineynoy-elektricheskoy-tsepi-postoyannogo-toka.pptx
  • Количество просмотров: 127
  • Количество скачиваний: 0