напряжение нарушает динамическое равновесие токов в p-n-переходе. p-n переход
переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n-перехода возможно два режима работы.
1) Прямое смещение p-n перехода. Р-n переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р-области, а отрицательный к n-области (рис. .)
При прямом смещении, напряжения ϕк и U направлены встречно, результирующее напряжение на p-n переходе убывает до величины ϕк - U. Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. lp-n≈(ϕк – U)1/2. Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n переход протекает прямой ток Iр-n=Iпр=Iдиф+Iдр ≅Iдиф.
При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией, а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.
При увеличении U ток резко возрастает и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.
2) Обратное смещение, возникает когда к р- области приложен минус, а к n-области плюс, внешнего источника напряжения (рис. ).
Такое внешнее напряжение U включено согласно ϕк. Оно: увеличивает высоту потенциального барьера до величины ϕк + U; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. lp-n≈(ϕк + U)1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n-перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I0, т.е.
Iр-n=Iобр=Iдиф+Iдр ≅Iдр= I0.
Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.
При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n-областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией. Экстракция и создает обратный ток p-n перехода- это ток неосновных носителей заряда.
Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.
Температурная зависимость обратного тока определяется выражением
где T0 - номинальная температура, T - фактическая температура, T* - температура удвоения теплового тока
Тепловой ток кремниевого перехода много меньше теплового токо перехода на основе германия
(на 3-4 порядка). Это связано с ϕк материала.
С увеличением площади перехода возрастает его объем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.