Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Механика твёрдого тела

Содержание

Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время.Центральный удар – такой, если тела до удара движутся вдоль прямой, проходящей через их центры масс.Определения:Абсолютно упругий удар — столкновение двух тел,
ФизикаДинамика (продолжение) Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится Закон сохранения механической энергии:Закон сохранения импульса:Для абсолютно упругого удара справедливы законы: Решая совместно два уравнения, получим выражения для скорости тел после удара: Абсолютно неупругий ударЗакон сохранения импульса:В частном случае, если массы шаров равны (т1=т2), Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы 4. Механика твердого тела4.1. Момент инерцииМоментом инерции системы (тела) относительно данной оси Теорема Штейнера: «момент инерции тела J относительно произвольной оси равен моменту его Пример.Момент инерции длинного стержня, у которого ось симметрии проходит через конец стержня:4.2. Момент инерции — мера инертности тела при вращательном движении. В случае плоского 4.3. Момент силы. Основное уравнение динамики вращательного движения твердого телаМоментом силы F Моментом силы F относительно неподвижной оси Z называется скалярная величина Mz, равную Работа при вращении тела: Работа при вращении тела идет на увеличение его Если ось z совпадает с главной осью инерции, проходящей через центр масс, 4.4. Момент импульса и закон сохранения момента импульсаМоментом импульса материальной точки A Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц Закон сохранения момента импульса:«момент импульса замкнутой системы сохраняется, т. е. не изменяется Соотношение основных параметров 4.5. Деформация твердого телаДеформация – это изменение формы и размеров твердых тел Основные параметры деформация твердого телаНапряжение – сила, действующая на единицу площади поперечного Деформации ε и ε' всегда имеют разные знаки (при растяжении Δl положительно, 4.6. Закон ГукаДля малых деформаций относительное удлинение ε и напряжение σ прямо Закон Гука: «удлинение стержня при упругой деформации пропорционально действующей на стержень силе»:k—коэффициент
Слайды презентации

Слайд 2 Удар (или соударение)—это столкновение двух или более тел,

Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие

при котором взаимодействие длится очень короткое время.
Центральный удар –

такой, если тела до удара движутся вдоль прямой, проходящей через их центры масс.

Определения:

Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.

Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

3.3. Соударения тел


Слайд 3 Закон сохранения механической энергии:
Закон сохранения импульса:
Для абсолютно упругого

Закон сохранения механической энергии:Закон сохранения импульса:Для абсолютно упругого удара справедливы законы:

удара справедливы законы:


Слайд 4 Решая совместно два уравнения, получим выражения для скорости

Решая совместно два уравнения, получим выражения для скорости тел после удара:

тел после удара:


Слайд 5 Абсолютно неупругий удар
Закон сохранения импульса:
В частном случае, если

Абсолютно неупругий ударЗакон сохранения импульса:В частном случае, если массы шаров равны

массы шаров равны (т1=т2), то
Если ударяемое тело было первоначально

неподвижно (v2=0), то

Слайд 6 Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в

Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие

тепловую или другие формы энергии.
Если ударяемое тело было

первоначально неподвижно (v2=0), то

Слайд 7 4. Механика твердого тела
4.1. Момент инерции
Моментом инерции системы

4. Механика твердого тела4.1. Момент инерцииМоментом инерции системы (тела) относительно данной

(тела) относительно данной оси называется физическая величина, равная сумме

произведений масс материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу по объему тела:

Моментом инерции тела относительно оси называется произведение массы тела на квадраты расстояния до оси:


Слайд 8 Теорема Штейнера:
«момент инерции тела J относительно произвольной

Теорема Штейнера: «момент инерции тела J относительно произвольной оси равен моменту

оси равен моменту его инерции Jc относительно параллельной оси,

проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями»

Слайд 9 Пример.
Момент инерции длинного стержня, у которого ось симметрии

Пример.Момент инерции длинного стержня, у которого ось симметрии проходит через конец

проходит через конец стержня:
4.2. Кинетическая энергия вращения
Кинетическая энергия вращающегося

тела равна сумме кинетических энергий его элементарных объемов:

Слайд 10 Момент инерции — мера инертности тела при вращательном

Момент инерции — мера инертности тела при вращательном движении. В случае

движении.
В случае плоского движения тела, например цилиндра, скатывающегося

с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

Слайд 11 4.3. Момент силы. Основное уравнение динамики вращательного движения

4.3. Момент силы. Основное уравнение динамики вращательного движения твердого телаМоментом силы

твердого тела
Моментом силы F относительно неподвижной точки О называется

физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку А приложения силы, на силу F.

Модуль момента силы:


Слайд 12 Моментом силы F относительно неподвижной оси Z называется

Моментом силы F относительно неподвижной оси Z называется скалярная величина Mz,

скалярная величина Mz, равную проекции на эту ось вектора

M момента силы, определенного относительно произвольной точки O данной оси Z .

Значение момента не зависит от выбора точки O на оси Z.


Слайд 13 Работа при вращении тела:
Работа при вращении тела

Работа при вращении тела: Работа при вращении тела идет на увеличение

идет на увеличение его кинетической энергии:
Отсюда:
- уравнение динамики

вращательного движения твердого тела относительно неподвижной оси.

Основной закон и основное уравнение динамики вращательного движения твердого тела.


Слайд 14 Если ось z совпадает с главной осью инерции,

Если ось z совпадает с главной осью инерции, проходящей через центр

проходящей через центр масс, то имеет место векторное равенство:
J

— главный момент инерции тела.

Главный момент инерции – момент инерции относительно главной оси, проходящий через центр масс.


– основной закон динамики вращательного движения.


Слайд 15 4.4. Момент импульса и закон сохранения момента импульса
Моментом

4.4. Момент импульса и закон сохранения момента импульсаМоментом импульса материальной точки

импульса материальной точки A относительно неподвижной оси O называется

физическая величина, определяемая векторным произведением:

Слайд 16 Моментом импульса относительно неподвижной оси z называется скалярная

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная

величина Lz, равная проекции на эту ось вектора момента

импульса, определенного относительно произвольной точки О данной оси.

Скорость vi и импульс mivi каждой отдельной точки A тела перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi .


Слайд 17 Момент импульса твердого тела относительно оси есть сумма

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных

моментов импульса отдельных частиц (точек):
Продифференцируем записанное уравнение по времени:
Это

еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси:

«производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси».

Слайд 18 Закон сохранения момента импульса:
«момент импульса замкнутой системы сохраняется,

Закон сохранения момента импульса:«момент импульса замкнутой системы сохраняется, т. е. не

т. е. не изменяется с течением времени».
Закон сохранения момента

импульса — фундаментальный закон природы.

Он связан со свойством симметрии пространства — его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.


Пространство называется изотропным, если поворот системы отсчета  на произвольный угол не приведет к изменению результатов измерений.


Слайд 19 Соотношение основных параметров

Соотношение основных параметров

Слайд 20 4.5. Деформация твердого тела
Деформация – это изменение формы

4.5. Деформация твердого телаДеформация – это изменение формы и размеров твердых

и размеров твердых тел после прекращения действия внешних сил.
Деформация

называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму.

Деформации, называются пластическими , если они сохраняются после прекращения действия внешних сил.

Деформации бывают: растяжения, сжатия или сдвига.


Слайд 21 Основные параметры деформация твердого тела
Напряжение – сила, действующая

Основные параметры деформация твердого телаНапряжение – сила, действующая на единицу площади

на единицу площади поперечного сечения :
Относительная деформация – количественная

мера, характеризующая степень деформации, испытываемой телом:

Относительное поперечное растяжение (сжатие):

d — диаметр стержня.


Слайд 22 Деформации ε и ε' всегда имеют разные знаки

Деформации ε и ε' всегда имеют разные знаки (при растяжении Δl


(при растяжении Δl положительно, a Δd отрицательно,
при сжатии

Δl отрицательно, a Δd положительно).

Взаимосвязь ε и ε':

μ — коэффициент Пуассона, зависит от свойств материала.

Симеон Пуассон — французский ученый (1781—1840) , автор трудов по теории упругости.


Слайд 23 4.6. Закон Гука
Для малых деформаций относительное удлинение ε

4.6. Закон ГукаДля малых деформаций относительное удлинение ε и напряжение σ

и напряжение σ прямо пропорциональны друг другу:
Коэффициент пропорциональности Е

называется модулем Юнга. Модуль Юнга Е определяется напряжением, вызывающим относитель­ное удлинение, равное единице.

Относительное удлинение:

Томас Юнг (1773-1829) — английский физик, механик, врач, астроном.


  • Имя файла: mehanika-tvyordogo-tela.pptx
  • Количество просмотров: 158
  • Количество скачиваний: 0