Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Логическое программирование

Содержание

СодержаниеОпределение и алгоритм решения головоломокПоиск в пространстве решений (в глубину/ширину)Примеры решения логических задачОбщие выводы
Логическое программированиеПрезентация 10Решение логических задач СодержаниеОпределение и алгоритм решения головоломокПоиск в пространстве решений (в глубину/ширину)Примеры решения логических задачОбщие выводы Логические задачи (головоломки)Логическая головоломка состоит из нескольких фактов относительно небольшого числа объектов, Пример головоломкиУсловие:	Беседуют трое друзей: Белов, Рыжов, Чернов.	Брюнет сказал Белову: «Посмотри, один из Решение головоломкиsurname('Белов').surname('Чернов').surname('Рыжов').color('рыжий').color('светлый').color('черный').hair(X, Y) :- surname(X), color(Y),  X='Белов', not(Y='черный'), not(Y='светлый'). hair(X, Y) Поиск решения головоломки% Конкретизируем переменные X и Y допустимыми значениями % эти Более сложный пример:  поиск соответствийВ автомобильных гонках три первых места заняли Решение головоломкиЗапишем правила и предикат поиска решения/* Устанавливаем взаимно-однозначное соответствиемежду базами данных, Запускаем решатель… ?- решение(X1,Y1,X2,Y2,X3,Y3).X1 = петяY1 = первоеX2 = коляY2 = второеX3 Логические задачиПространство состояний - это граф, вершины которого соответствуют ситуациям, встречающимся в Пример: задача с кубикамиЗадача состоит в выработке плана переупорядочивания кубиков, поставленных друг Граф состоянийКак показывает рассмотренный пример, с задачами такого рода связано два типа Решение задачи о кубиках% удаление элемента Х из списка, результат - в Стратегия поиска в глубинуДля того, чтобы найти решающий путь Sol из заданной Оптимизация поиска: избавляемся от цикловМы говорим Реализация поиска в глубину  без зацикливаний% solve( Node, Solution):% Решение Solution Поиск в ширинуВ противоположность поиску в глубину стратегия поиска в ширину предусматривает Граф поиска в ширинуПростое пространство состояний:  а  - стартовая вершина, f  и  Реализация поиска в ширинуЧтобы выполнить поиск в ширину при заданном множестве путей Задача о ханойской башнеАвтор: математик Люка,1883 год.    Решение задачи  о Ханойских башнях% move(число_дисков, откуда, куда, через)move(1,X,Y,_) :- Находим решение  ханойской задачи…?- hanoi(4).Перемещаем диск с лев. стержня на центр.Перемещаем Более сложная задача:  Фермер (вол-коза-капуста)Условия: Действующие лица:фермер ( Farmer ), волк Решение задачи:  описание условий% противоположные берегаopposite('ПРАВ.', 'ЛЕВ.').opposite('ЛЕВ.', 'ПРАВ.').% возможные перемещенияmove(state(X,X,G,C), state(Y,Y,G,C)):- Поиск путей решенияpath(S,G,L,L1):-   move(S,S1),   not( unsafe(S1) ), Для организации удобной формы вывода…member(X,[X|_]).member(X,[_|L]):- member(X,L).write_move( state(X,W,G,C), state(Y,W,G,C) ) :-!, Получаем готовое решение?- go.Порядок перемещений (решение):Фермер перевозит козу с ЛЕВ. берега реки Еще одна головоломка…Побег от ЗургаПерсонажи фильма «История игрушек»: Базз, Вуди, Рекс и Решение задачи «Побег от Зурга»% факты: время прохождения моста каждым героемtime(buzz, 5).time(woody,10).time(rex, Продолжение решения:  определяем допустимые переходы/* Идея – в представлении промежуточных состояний Поиск решений% cross/2 формулирует поисковую задачу, % задавая начальную и конечную конфигурации Задача о ферзяхЗадача о расстановке на шахматной доске ферзей таким образом, чтобы Решение задачи о ферзяхsolution ([ ]).solution ([queen (X,Y)|Rest]):-  solution (Rest), Полученные решения[queen (1,4), queen (2,2), queen (3,7), queen (4,3), queen (5,6), queen ВыводыПространство состояний - это направленный граф, вершины которого соответствуют проблемным ситуациям, а
Слайды презентации

Слайд 2 Содержание
Определение и алгоритм решения головоломок
Поиск в пространстве решений

СодержаниеОпределение и алгоритм решения головоломокПоиск в пространстве решений (в глубину/ширину)Примеры решения логических задачОбщие выводы

(в глубину/ширину)
Примеры решения логических задач
Общие выводы


Слайд 3 Логические задачи (головоломки)
Логическая головоломка состоит из нескольких фактов

Логические задачи (головоломки)Логическая головоломка состоит из нескольких фактов относительно небольшого числа

относительно небольшого числа объектов, которые имеют различные атрибуты.
Минимальное

число фактов относительно объектов и атрибутов связано с желанием выдать единственный вариант назначения атрибутов объектам.
Зачастую в задаче устанавливается взаимно-однозначное соответствие между двумя множествами. Если этих ограничений нет, то задача сильно усложняется (при неоднозначности могут появиться альтернативные решения, потребоваться вмешательство пользователя в решение и т.п.).
Общий алгоритм решения головоломок:
Перечисляются действующие лица, их допустимые атрибуты
Задаются известные факты об атрибутах лиц и их взаимосвязях
Задается вопрос, соответствующий исходному заданию, происходит вызов предиката поиска решений
Решение выдается в виде конкретизированных переменных (если таковые были заданы), либо выводится на экран командами типа write



Слайд 4 Пример головоломки
Условие:
Беседуют трое друзей: Белов, Рыжов, Чернов.
Брюнет сказал

Пример головоломкиУсловие:	Беседуют трое друзей: Белов, Рыжов, Чернов.	Брюнет сказал Белову: «Посмотри, один

Белову: «Посмотри, один из нас блондин, другой – рыжий,

третий – брюнет, но ни у кого цвет волос не соответствует его фамилии».
Вопрос: какой цвет волос у каждого собеседника?






Слайд 5 Решение головоломки
surname('Белов').
surname('Чернов').
surname('Рыжов').

color('рыжий').
color('светлый').
color('черный').

hair(X, Y) :-
surname(X), color(Y),
X='Белов',

Решение головоломкиsurname('Белов').surname('Чернов').surname('Рыжов').color('рыжий').color('светлый').color('черный').hair(X, Y) :- surname(X), color(Y), X='Белов', not(Y='черный'), not(Y='светлый'). hair(X, Y)

not(Y='черный'), not(Y='светлый').

hair(X, Y) :-
surname(X), color(Y),
X='Чернов',

not(Y='черный'), not(hair('Белов', Y)).

hair(X, Y) :-
surname(X), color(Y),
X='Рыжов',
not(hair('Белов', Y)), not(hair('Чернов', Y)).


Слайд 6 Поиск решения головоломки
% Конкретизируем переменные X и Y

Поиск решения головоломки% Конкретизируем переменные X и Y допустимыми значениями %

допустимыми значениями
% эти значения и будут искомыми решениями

задачи

?- hair(X, Y).

X = 'Белов'
Y = рыжий ;

X = 'Чернов'
Y = светлый ;

X = 'Рыжов'
Y = черный ;

No


Слайд 7 Более сложный пример: поиск соответствий
В автомобильных гонках три

Более сложный пример: поиск соответствийВ автомобильных гонках три первых места заняли

первых места заняли Алеша, Петя и Коля. Какое место

занял каждый из них, если Петя занял не второе и не третье место, а Коля - не третье?

Сперва запишем факты (очевидные данные):
/* База данных имен */
имя(алеша).
имя(петя).
имя(коля).
/* База данных призовых мест */
место(первое).
место(второе).
место(третье).


Слайд 8 Решение головоломки
Запишем правила и предикат поиска решения
/* Устанавливаем

Решение головоломкиЗапишем правила и предикат поиска решения/* Устанавливаем взаимно-однозначное соответствиемежду базами

взаимно-однозначное соответствие
между базами данных, X - элемент из базы

данных имен,
Y - элемент из базы данных занятых мест */

/* Петя занял не второе и не третье место */
соответствие(X, Y) :- имя(X), X=петя,
место(Y), not(Y=второе), not(Y=третье).

/* Коля занял не третье место */
соответствие(X, Y) :- имя(X), X=коля, место(Y), not(Y=третье).

соответствие(X, Y) :- имя(X), X=алеша, место(Y).

/* У всех ребят разные места */
решение(X1,Y1,X2,Y2,X3,Y3) :-
X1=петя, соответствие(X1,Y1),
X2=коля, соответствие(X2,Y2),
X3=алеша, соответствие(X3,Y3),
Y1\=Y2, Y2\=Y3, Y1\=Y3.

Слайд 9 Запускаем решатель…
?- решение(X1,Y1,X2,Y2,X3,Y3).

X1 = петя
Y1 = первое

X2

Запускаем решатель… ?- решение(X1,Y1,X2,Y2,X3,Y3).X1 = петяY1 = первоеX2 = коляY2 =

= коля
Y2 = второе

X3 = алеша
Y3 = третье


Слайд 10 Логические задачи
Пространство состояний - это граф, вершины которого

Логические задачиПространство состояний - это граф, вершины которого соответствуют ситуациям, встречающимся

соответствуют ситуациям, встречающимся в задаче ("проблемные ситуации"), а решение

задачи сводится к поиску пути в этом графе.
Примеры задач, где используется поиск в пространстве состояний:
Ханойские башни
Задача о волке, козе и капусте
Игра в 15
Задача коммивояжера
Другие логические задачи (эвристика, олимпиадные задачи, проблемы ИИ,…)
Рассмотрим на примерах, как формулируются задачи в терминах пространства состояний, а также обсудим общие методы решения сооотв. задач.
Процесс решения задачи включает в себя поиск в графе, при этом, как правило, возникает проблема, как обрабатывать альтернативные пути поиска. Мы рассмотрим две основные стратегии перебора альтернатив: поиск в глубину и поиск в ширину.


Слайд 11 Пример: задача с кубиками
Задача состоит в выработке плана

Пример: задача с кубикамиЗадача состоит в выработке плана переупорядочивания кубиков, поставленных

переупорядочивания кубиков, поставленных друг на друга, как показано на

рисунке. На каждом шагу разрешается переставлять только один кубик. Кубик можно взять только тогда, когда его верхняя поверхность свободна. Кубик можно поставить либо на стол, либо на другой кубик. Для того, чтобы построить требуемый план, мы должны отыскать последовательность ходов, реализующую заданную трансформацию.
Эту задачу можно представлять себе как задачу выбора среди множества возможных альтернатив. В исходной ситуации альтернатива всего одна: поставить кубик С на стол. После того как кубик С поставлен на стол, мы имеем три альтернативы:
поставить А на стол или
поставить А на С, или
поставить С на А.


Слайд 12 Граф состояний
Как показывает рассмотренный пример, с задачами такого

Граф состоянийКак показывает рассмотренный пример, с задачами такого рода связано два

рода связано два типа понятий:
Проблемные ситуации.
Разрешенные ходы или действия,

преобразующие одни проблемные ситуации в другие.
Проблемные ситуации вместе с возможными ходами образуют направленный граф, называемый пространством состояний. Вершины графа соответствуют проблемным ситуациям, дуги - разрешенным переходам из одних состояний в другие. Задача отыскания плана решения задачи эквивалентна задаче построения пути между заданной начальной ситуацией ("стартовой" вершиной) и некоторой указанной заранее конечной ситуацией, называемой также целевой вершиной.

Примечание:
Каждому разрешенному ходу или действию можно приписать его стоимость. Например, в нашей задаче стоимости, приписанные перемещениям кубиков, будут указывать нам на то, что некоторые кубики перемещать труднее, чем другие. В тех случаях, когда каждый ход имеет стоимость, мы заинтересованы в отыскании решения минимальной стоимости. Стоимость решения - это сумма стоимостей дуг, из которых состоит "решающий путь" - путь из стартовой вершины в целевую. Либо может потребоваться найти кратчайший путь по кол-ву состояний…


Слайд 13 Решение задачи о кубиках
% удаление элемента Х из

Решение задачи о кубиках% удаление элемента Х из списка, результат -

списка, результат - в L
del(X, [X | L], L).


del(X, [Y | L], [Y | L1]):- del(X, L, L1).

% переход между состояниями: s(X, Y)
% где X - предыдущий, Y - последующий допустимый шаг/состояние
% перенести верхний кубик Top1 на столбик Stack2
s( Stacks, [Stackl, [Top1 | Stack2] | OtherStacks] ) :-
del([Top1 | Stackl], Stacks, Stacksl), % Найти первый столбик
del(Stack2, Stacksl, OtherStacks). % Найти второй столбик

goal(Situation):-
member([a,b,c], Situation). % Целевое состояние

Алгоритмы поиска реализуются в программе в виде отношения:
solve(Start, Solution)
где Start — начальный узел в пространстве состояний,
a Solution — путь от узла Start до любого целевого узла.
% Вызов поиска:
?- solve([[c,a,b], [], []], Solution). % Определение см. далее

Слайд 14 Стратегия поиска в глубину
Для того, чтобы найти решающий

Стратегия поиска в глубинуДля того, чтобы найти решающий путь Sol из

путь Sol из заданной вершины N в некоторую целевую

вершину, необходимо:
если N - это целевая вершина, то положить Sol = [N], или
если для исходной вершины N существует вершина-преемник N1, такая, что можно провести путь Sol1 из N1 в целевую вершину, то положить Sol = [N | Sol1].

% целевая вершина
solve(N, [N]):-
goal(N).

% составной путь
solve(N, [N | Sol1]):-
s(N, N1),
solve(N1, Sol1).

Рис. 11. 4.  Пример простого пространства состояний: 
а   -  стартовая вершина,   f    и   j   -  целевые вершины.
Порядок, в которой происходит проход по вершинам пространства
состояний при поиске в глубину: а, b, d, h, e, i, j.
Найдено решение [a, b, e, j]. После возврата: [а, с, f].


Слайд 15 Оптимизация поиска: избавляемся от циклов
Мы говорим "в глубину",

Оптимизация поиска: избавляемся от цикловМы говорим

имея в виду тот порядок, в котором рассматриваются альтернативы

в пространстве состояний. Всегда, когда алгоритму поиска в глубину надлежит выбрать из нескольких вершин ту, в которую следует перейти для продолжения поиска, он предпочитает самую "глубокую" из них. Самая глубокая вершина - это вершина, расположенная дальше других от стартовой вершины
Поиск в глубину наиболее адекватен рекурсивному стилю программирования, принятому в Прологе. Причина этого состоит в том, что, обрабатывая цели, пролог-система сама просматривает альтернативы именно в глубину.

Очевидное усовершенствование –
добавление механизма обнаружения циклов:
Ни одну из вершин, уже содержащихся в пути,
построенном из стартовой вершины в текущую
вершину, не следует вторично рассматривать
в качестве возможной альтернативы продолжения
поиска. Правило можно сформулировать в виде:

depthfirst( Path, Node, Solution)


Начинаясь в а, поиск заканчивается бесконечным циклом между  d  и  h:  
a, b, d, h, d, h, d ...


Слайд 16 Реализация поиска в глубину без зацикливаний
% solve( Node,

Реализация поиска в глубину без зацикливаний% solve( Node, Solution):% Решение Solution

Solution):
% Решение Solution представляет собой ациклический путь (узлы в


% котором указаны в обратном порядке) между узлом Node и целью

solve( Node, Solution):-
depthfirst( [], Node, Solution).

% depthfirst( Path, Node, Solution):
% решение Solution формируется в результате продления пути
% [Node | Path] до целевого узла

depthfirst( Path, Node, [Node | Path] ) :-
goal( Node).

depthfirst( Path, Node, Sol) :-
s( Node, Node1),
not member( Node1, Path), % Предотвращение цикла
depthfirst( [Node | Path], Node1, Sol).


Слайд 17 Поиск в ширину
В противоположность поиску в глубину стратегия

Поиск в ширинуВ противоположность поиску в глубину стратегия поиска в ширину

поиска в ширину предусматривает переход в первую очередь к

вершинам, ближайший к стартовой вершине. В результате процесс поиска имеет тенденцию развиваться более в ширину, чем в глубину (см. рис).
Поиск в ширину программируется не так легко, как поиск в глубину. Причина состоят в том, что нам приходится сохранять все множество альтернативных вершин-кандидатов, а не только одну вершину, как при поиске в глубину. Более того, если мы желаем получить при помощи процесса поиска решающий путь, то одного множества вершин недостаточно. Поэтому мы будем хранить не множество вершин-кандидатов, а множество путей-кандидатов. Таким образом, цель
        breadthfirst( Paths, Solution)
истинна только тогда, когда существует путь из множества кандидатов Пути, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть Solution.


Слайд 18 Граф поиска в ширину
Простое пространство состояний: 
а  -

Граф поиска в ширинуПростое пространство состояний:  а  - стартовая вершина, f 

стартовая вершина, f  и  j  - целевые вершины.

Применение стратегии

поиска в ширину дает следующий порядок прохода по вершинам: а, b, c, d, e, f.

Более короткое решение:
[a, c, f]
найдено раньше, чем более длинное:
[а, b, e, j]


Слайд 19 Реализация поиска в ширину
Чтобы выполнить поиск в ширину

Реализация поиска в ширинуЧтобы выполнить поиск в ширину при заданном множестве

при заданном множестве путей нужно:
если голова первого пути

- это целевая вершина, то взять этот путь в качестве решения
иначе удалить первый путь из множества кандидатов и породить множество всех возможных продолжений этого пути на один шаг; множество продолжений добавить в конец множества кандидатов, а затем выполнить поиск в ширину с полученным новым множеством.
% solve( Start, Solution):
% Решение Solution – путь из вершины Start к цели

solve( Start, Solution) :-
breadthfirst( [ [Start] | Z] - Z, Solution).

breadthfirst( [ [Node | Path] | _] - _, [Node | Path] ) :-
goal( Node).

breadthfirst( [Path | Paths] - Z, Solution) :-
extend( Path, NewPaths),
conc( NewPaths, Z1, Z), % Добавить NewPaths в конец
Paths \== Z1, % Множество возможных путей – не пустое
breadthfirst( Paths - Z1, Solution).

Слайд 20 Задача о ханойской башне
Автор: математик Люка,1883 год.   "Где-то

Задача о ханойской башнеАвтор: математик Люка,1883 год.  

в непроходимых джунглях, недалеко от города Ханоя, есть монастырь

бога Брамы. В начале времен, когда Брама создавал Мир, он воздвиг в этом монастыре три высоких алмазных стержня и на один из них возложил 64 диска, сделанных из чистого золота. Он приказал монахам перенести эту башню на другой стержень (в соответствии с правилами, разумеется). С этого времени монахи работают день и ночь. Когда они закончат свой труд, наступит конец света."
В нашем примере будем использовать всего 4 диска и 3 стержня.
Правила перемещения дисков:
разрешается снимать со стержня только верхний диск,
запрещается класть больший диск на меньший,
при каждом ходе передвигается только один диск.

В решении будем использовать рекурсивный поиск всевозможных вариантов.


Слайд 21 Решение задачи о Ханойских башнях
% move(число_дисков, откуда, куда,

Решение задачи о Ханойских башнях% move(число_дисков, откуда, куда, через)move(1,X,Y,_) :-

через)

move(1,X,Y,_) :-
write('Перемещаем диск с '),

write(X), write(' стержня на '),
write(Y), nl.

move(N,X,Y,Z) :-
N>1,
M is N-1,
move(M,X,Z,Y),
move(1,X,Y,_),
move(M,Z,Y,X).

% Предикат для запуска поиска решений задачи размерности X
hanoi(X):- move(X, 'лев.', 'прав.', 'центр.').

Слайд 22 Находим решение ханойской задачи…
?- hanoi(4).
Перемещаем диск с лев.

Находим решение ханойской задачи…?- hanoi(4).Перемещаем диск с лев. стержня на центр.Перемещаем

стержня на центр.
Перемещаем диск с лев. стержня на прав.
Перемещаем

диск с центр. стержня на прав.
Перемещаем диск с лев. стержня на центр.
Перемещаем диск с прав. стержня на лев.
Перемещаем диск с прав. стержня на центр.
Перемещаем диск с лев. стержня на центр.
Перемещаем диск с лев. стержня на прав.
Перемещаем диск с центр. стержня на прав.
Перемещаем диск с центр. стержня на лев.
Перемещаем диск с прав. стержня на лев.
Перемещаем диск с центр. стержня на прав.
Перемещаем диск с лев. стержня на центр.
Перемещаем диск с лев. стержня на прав.
Перемещаем диск с центр. стержня на прав.

Yes

Слайд 23 Более сложная задача: Фермер (вол-коза-капуста)
Условия: Действующие лица:
фермер (

Более сложная задача: Фермер (вол-коза-капуста)Условия: Действующие лица:фермер ( Farmer ), волк

Farmer ),
волк ( Wolf ),
козел ( Goat

)
капуста ( Cabbidge )
находятся на одном (правом) берегу
У берега находится лодка, в которую могут поместиться только двое.
Нельзя оставлять на одном берегу козу и капусту, козу и волка.
Задание: Надо перебраться на другой (левый) берег на лодке.


Слайд 24 Решение задачи: описание условий
% противоположные берега
opposite('ПРАВ.', 'ЛЕВ.').
opposite('ЛЕВ.', 'ПРАВ.').

%

Решение задачи: описание условий% противоположные берегаopposite('ПРАВ.', 'ЛЕВ.').opposite('ЛЕВ.', 'ПРАВ.').% возможные перемещенияmove(state(X,X,G,C), state(Y,Y,G,C)):-

возможные перемещения
move(state(X,X,G,C), state(Y,Y,G,C)):- opposite(X,Y). /* фермер с волком */
move(state(X,W,X,C),

state(Y,W,Y,C)):- opposite(X,Y). /* фермер с козой */
move(state(X,W,G,X), state(Y,W,G,Y)):- opposite(X,Y). /* фермер с капустой */
move(state(X,W,G,C), state(Y,W,G,C)):- opposite(X,Y). /* фермер один */

% недопустимые состояния
unsafe( state(F,X,X,_) ):- opposite(F,X). % волк съест козу
unsafe( state(F,_,X,X) ):- opposite(F,X). % коза съест капусту


Слайд 25 Поиск путей решения
path(S,G,L,L1):-
move(S,S1),

Поиск путей решенияpath(S,G,L,L1):-  move(S,S1),  not( unsafe(S1) ),  not(

not( unsafe(S1) ),
not( member(S1,L) ),

path( S1,G,[S1|L],L1),!.

path(G,G,T,T):- !. % найдено финальное состояние

% Для вызова решения можно использовать:

go:- go(state('ПРАВ.','ПРАВ.','ПРАВ.','ПРАВ.'), state('ЛЕВ.','ЛЕВ.','ЛЕВ.','ЛЕВ.')).

go(S,G):-
path(S,G,[S],L),
nl,write('Порядок перемещений (решение):'), nl,
write_path(L),
fail.
go(_,_).


Слайд 26 Для организации удобной формы вывода…
member(X,[X|_]).
member(X,[_|L]):- member(X,L).

write_move( state(X,W,G,C), state(Y,W,G,C)

Для организации удобной формы вывода…member(X,[X|_]).member(X,[_|L]):- member(X,L).write_move( state(X,W,G,C), state(Y,W,G,C) ) :-!,

) :-!,
write('Фермер переплывает реку с

'),
write(X), write(' реки на '), write(Y), nl.
write_move( state(X,X,G,C), state(Y,Y,G,C) ) :-!,
write('Фермер перевозит волка с '),
write(X), write(' берега реки на '), write(Y), nl.
write_move( state(X,W,X,C), state(Y,W,Y,C) ) :-!,
write('Фермер перевозит козу с ' ),
write(X), write(' берега реки на '), write(Y), nl.
write_move( state(X,W,G,X), state(Y,W,G,Y) ) :-!,
write('Фермер перевозит капусту с '),
write(X), write(' берега реки на '), write(Y), nl.

write_path( [H1,H2|T] ) :- !,
write_move(H1,H2),write_path([H2|T]).

write_path( _ ).




Слайд 27 Получаем готовое решение
?- go.
Порядок перемещений (решение):
Фермер перевозит козу

Получаем готовое решение?- go.Порядок перемещений (решение):Фермер перевозит козу с ЛЕВ. берега

с ЛЕВ. берега реки на ПРАВ.
Фермер переплывает реку с

ПРАВ. реки на ЛЕВ.
Фермер перевозит капусту с ЛЕВ. берега реки на ПРАВ.
Фермер перевозит козу с ПРАВ. берега реки на ЛЕВ.
Фермер перевозит волка с ЛЕВ. берега реки на ПРАВ.
Фермер переплывает реку с ПРАВ. реки на ЛЕВ.
Фермер перевозит козу с ЛЕВ. берега реки на ПРАВ.
Yes

Слайд 28 Еще одна головоломка…
Побег от Зурга
Персонажи фильма «История игрушек»:

Еще одна головоломка…Побег от ЗургаПерсонажи фильма «История игрушек»: Базз, Вуди, Рекс

Базз, Вуди, Рекс и Хэмм - убегают от Зурга.


Им осталось только перейти через последний мост, и они будут свободны.
Однако, мост очень ветхий и сможет одновременно выдержать только двоих из них.
Также, что бы перейти мост и не попасть в ловушки и ямы в нём, нужен фонарик.
Проблема в том, что у наших четырёх друзей всего один фонарик и заряда батареи
в нём осталось всего лишь на 60 (шестьдесят) минут.
Игрушки могут перейти мост в одну сторону за различное время:

Игрушка Время
Базз 5 минут
Вуди 10 минут
Рекс 20 минут
Хэмм 25 минут

Так как одновременно на мосту могут находиться только две игрушки, они не могут
перейти мост сразу все вместе. Так как им нужен фонарик для перехода через мост,
кому-то из двоих, перешедших через мост, нужно будет вернуться к оставшимся игрушкам,
что бы отдать им фонарик.

Вопрос: в каком порядке эти четыре игрушки должны пересечь мост за
время не более 60 минут, что бы спастись от Зурга?


Слайд 29 Решение задачи «Побег от Зурга»
% факты: время прохождения

Решение задачи «Побег от Зурга»% факты: время прохождения моста каждым героемtime(buzz,

моста каждым героем
time(buzz, 5).
time(woody,10).
time(rex, 20).
time(hamm, 25).

% список действующих персонажей
toys([buzz,hamm,rex,woody]).

cost([],0)

:- !.% цена перехода моста равно 0, если все перешли
cost([X|L],C) :- % иначе равна времени самого медлительного
time(X,S),
cost(L,D),
C is max(S,D).

% вспомогательный предикат: вычисляется каждая допустимая группа
% игрушек, двигающаяся направо (выдает списки длины 2)
split(L,[X,Y],M) :-
member(X,L), % если X есть в L
member(Y,L), % и Y есть в L
compare(<,X,Y), % и X subtract(L,[X,Y],M). % удаляем все X и Y из L, рез-т – в М



Слайд 30 Продолжение решения: определяем допустимые переходы
/* Идея – в

Продолжение решения: определяем допустимые переходы/* Идея – в представлении промежуточных состояний

представлении промежуточных состояний переходов через мост фактами вида st(P,L),

где L - список игрушек, находящихся в данный момент на левой стороне моста, а P - признак, показывающий положение фонарика (левая или правая сторона) */
move(st(l,L1),st(r,L2),r(M),D) :-
split(L1,M,L2), cost(M,D).

move(st(r,L1),st(l,L2),l(X),D) :-
toys(T),
subtract(T,L1,R),
member(X,R),
merge_set([X],L1,L2),
time(X,D).
% trans/4 в основном генерирует все возможные переходы через мост вместе с требуемым временем
trans(st(r,[]),st(r,[]),[],0).
trans(S,U,L,D) :-
move(S,T,M,X),
trans(T,U,N,Y),
append([M],N,L),
D is X + Y.

Слайд 31 Поиск решений
% cross/2 формулирует поисковую задачу,
% задавая

Поиск решений% cross/2 формулирует поисковую задачу, % задавая начальную и конечную

начальную и конечную конфигурации пространства поиска.
cross(M,D) :-

toys(T),
trans(st(l,T),st(r,[]),M,D0),
D0=
solution(M) :- cross(M,60).
% конец программы

Запуск поиска решения:

?- solution(M).

M = [
r([buzz, woody]), l(buzz), r([hamm, rex]), l(woody), r([buzz, woody])
] ;

M = [
r([buzz, woody]), l(woody), r([hamm, rex]), l(buzz), r([buzz, woody])
] ;

No




Слайд 32 Задача о ферзях
Задача о расстановке на шахматной доске

Задача о ферзяхЗадача о расстановке на шахматной доске ферзей таким образом,

ферзей таким образом, чтобы ни один из ферзей не

находился под боем другого.

Для того, чтобы задача была решена, требуется расставить ферзей таким образом, чтобы все ферзи занимали разные горизонтали, разные вертикали и разные диагонали. Результат можно представить в виде списка, где каждый элемент списка - это координаты одного из ферзей. Заранее можно ограничить перебор, расставив ферзей по разным горизонталям.

Решить поставленную задачу можно следующим образом:
1. если список ферзей пуст, то это одно из решений задачи;
2. если список ферзей не пуст, то он будет являться решением в случае, если ферзи в хвосте списка не будут бить друг друга, то есть хвост списка сам будет решением, и ферзь, находящийся в голове списка, не будет бить ни одного ферзя из хвоста списка.


Слайд 33 Решение задачи о ферзях
solution ([ ]).
solution ([queen (X,Y)|Rest]):-

Решение задачи о ферзяхsolution ([ ]).solution ([queen (X,Y)|Rest]):- solution (Rest), belongs


solution (Rest),
belongs (Y, [1,2,3,4,5,6,7,8]),
notbeat

(queen (X,Y),Rest).

notbeat (_,[ ]):- !.
notbeat (queen (X,Y), [queen (X1,Y1)|Rest]):-
Y<>Y1,
TmpY1=Y1-Y,
TmpX1=X1-X,
TmpY1<>TmpX1,
TmpX=X-X1,
TmpY1<>TmpX,
notbeat (queen (X,Y),Rest).

belongs (X, [X|L]).
belongs (X, [Y|L]):- belongs (X,L).

templ ([queen (1,Y1),queen (2,Y2),queen (3,Y3),queen (4,Y4),queen (5,Y5),queen (6,Y6),queen (7,Y7),queen (8,Y8)]).

start:- templ (S), write(S), solution(S), write(S), nl, fail.


Слайд 34 Полученные решения
[queen (1,4), queen (2,2), queen (3,7), queen

Полученные решения[queen (1,4), queen (2,2), queen (3,7), queen (4,3), queen (5,6),

(4,3), queen (5,6), queen (6,8), queen (7,5), queen (8,1)]


[queen (1,5), queen (2,2), queen (3,4), queen (4,7), queen (5,3), queen (6,8), queen (7,6), queen (8,1)]
[queen (1,3), queen (2,5), queen (3,2), queen (4,8), queen (5,6), queen (6,4), queen (7,7), queen (8,1)]
[queen (1,3), queen (2,6), queen (3,4), queen (4,2), queen (5,8), queen (6,5), queen (7,7), queen (8,1)]
[queen (1,5), queen (2,7), queen (3,1), queen (4,3), queen (5,8), queen (6,6), queen (7,4), queen (8,2)]
[queen (1,4), queen (2,6), queen (3,8), queen (4,3), queen (5,1), queen (6,7), queen (7,5), queen (8,2)]
[queen (1,3), queen (2,6), queen (3,8), queen (4,1), queen (5,4), queen (6,7), queen (7,5), queen (8,2)]
[queen (1,5), queen (2,3), queen (3,8), queen (4,4), queen (5,7), queen (6,1), queen (7,6), queen (8,2)]
[queen (1,5), queen (2,7), queen (3,4), queen (4,1), queen (5,3), queen (6,8), queen (7,6), queen (8,2)] …

  • Имя файла: logicheskoe-programmirovanie.pptx
  • Количество просмотров: 134
  • Количество скачиваний: 0