Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по математике о методике решения задач №21 ЕГЭ (С6)

Содержание

Демо-2015. Задание №21.На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно - 3 , среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из
Задачи на теорию чисел.  ЕГЭ задача №21 (С-6).Иванова Инна ВладимировнаСунтар  МБОУ «СПТЛ-и» Демо-2015.  Задание №21.На доске написано более 40, но менее 48 целых Пусть среди написанных чисел k положительных, l нулей и m отрицательных. Пусть среди написанных чисел k положительных, l нулей и m отрицательных. Пусть среди написанных чисел k положительных, l нулей и m отрицательных. Мы ещё не ответили на вопрос задачи В), так как вывод: Необходимая теорияЧисловые множестваДелимостьЧётностьДеление с остаткомКаноническое разложениеВзаимно простые числаПоследовательности: арифметическая прогрессия, геометрическая прогрессияМетод «Оценка плюс пример» Необходимая теория Необходимая теорияДелимостьПонятие делимости относится к целым числам.Определение: Число а делится на число Необходимая теорияЧётностьНаиболее важные свойства:Сумма любого числа чётных слагаемых чётна.Сумма чётного числа нечётных Необходимая теорияДеление с остаткомЛюбое число а можно разделить с остатком на любое Необходимая теорияКаноническое разложениеВсякое число делится на 1 и на само себя. Если Необходимая теорияКаноническое разложениеВсякое число делится на 1 и на само себя. Если Необходимая теорияВзаимно простые числаОпределение: Числа называются взаимно простыми, если они не имеют Необходимая теорияУпражнение: Между числами 27 и 64 вставьте два числа так, чтобы получилась геометрическая прогрессия. Необходимая теорияМетод «Оценка плюс пример»«Оценка + пример» – это специальное математическое рассуждение, Метод «Оценка плюс пример»  Пример 2 (средний): Натуральные числа от 1 Метод «Оценка плюс пример» Задача №1. (ЕГЭ-2013 досрочный)Даны п различных натуральных чисел, составляющих арифметическую прогрессию, п Задача №2. (ЕГЭ-2013)Задумано несколько целых чисел. Набор этих чисел и их все Задача №3. (ЕГЭ-2014 диагностический вариант)Можно ли привести пример пяти различных натуральных чисел, Задача №4. (ЕГЭ-2014 диагностический вариант. Республиканская олимпиада 1989 года )Решите в натуральных Задача №5. (ЕГЭ-2014 досрочный вариант. 28 апреля)На окружности некоторым образом расставили натуральные Задача №6. (ЕГЭ-2014 5 июня)На  сайте  проводится  опрос,  кого  из  футболистов  посетители  Использованные материалы:Демонстрационный вариант ЕГЭ 2015 годаЯковлев И.В. «Материалы по математике. MathUs.ruМатериалы единого
Слайды презентации

Слайд 2 Демо-2015. Задание №21.
На доске написано более 40,

Демо-2015. Задание №21.На доске написано более 40, но менее 48 целых

но менее 48 целых чисел. Среднее арифметическое этих чисел

равно - 3 , среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно - 8 .
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?

Слайд 3 Пусть среди написанных чисел k положительных, l

Пусть среди написанных чисел k положительных, l нулей и m

нулей и m отрицательных. Тогда количество всех написанных чисел

равно k + l + m.

Демо-2015. Задание №21. Решение а).

Сумма набора чисел равна количеству чисел в этом наборе, умноженному на его среднее арифметическое, поэтому:
Сумма всех написанных чисел равна - 3(k + l + m)
Сумма всех положительных чисел равна 4k.
Сумма всех отрицательных чисел равна - 8т.

Тогда получаем, что 4k – 8m + 0l = - 3(k + l + m), то есть 4(k – 2m) = -3(k + l + m) , а это значит, что количество всех чисел кратно 4.

На доске написано более 40, но менее 48 целых чисел, но при этом их число кратно 4.
41 42 43 44 45 46 47

1 балл

Вывод: этих чисел может быть только 44.


Слайд 4 Пусть среди написанных чисел k положительных, l

Пусть среди написанных чисел k положительных, l нулей и m

нулей и m отрицательных. Тогда количество всех написанных чисел

равно k + l + m.

Демо-2015. Задание №21. Решение б).

Сумма всех написанных чисел равна - 3 ∙ (k + l + m ) .
Сумма всех положительных чисел равна 4k.
Сумма всех отрицательных чисел равна - 8т.

Нужно сравнить k и m .
Для этого составим равенство 4k – 8m = - 3∙(k + l + m ) , то есть 7k + 3l = 5m, из этого следует 7k ≤ 5m.
Отсюда очевидно: k ≤ m.

Вывод: отрицательных чисел больше.

1 балл


Слайд 5 Пусть среди написанных чисел k положительных, l

Пусть среди написанных чисел k положительных, l нулей и m

нулей и m отрицательных. Тогда количество всех написанных чисел

равно k + l + m = 44.

Демо-2015. Задание №21. Решение в).

Сумма всех написанных чисел равна - 3 ∙ 44 = - 132
Сумма всех положительных чисел равна 4k.
Сумма всех отрицательных чисел равна - 8т.

Тогда получаем, что 4k – 8m = - 132, то есть k = 2m - 33, но при этом k + m ≤ 44.
Отсюда получим: 3m ≤ 77. Значит, m ≤ 25.
Но нас интересуют положительные числа, тогда снова используем равенство k = 2m - 33 ≤ 25∙2 – 33=17

Вывод: положительных чисел может быть не более 17.

1 балл


Слайд 6 Мы ещё не ответили на вопрос задачи

Мы ещё не ответили на вопрос задачи В), так как

В), так как вывод: положительных чисел может быть не

более 17, - это только оценка границ числа k .

Демо-2015. Задание №21. Решение в).

Необходимо подобрать соответствующий пример, в котором будет именно 17 положительных чисел, причём способ подбора этого примера не нужно записывать. Здесь нужен только подходящий ответ.

Например, можно дать такой пример:
На доске 17 раз записана четвёрка, 25 раз записано число - 8 и 2 раза записан нуль. Этот набор вполне соответствует условиям , но можно подобрать и какой-нибудь другой пример.

Ответ: а) 44; б) отрицательных; в) 17.


1 балл


Слайд 7 Необходимая теория
Числовые множества
Делимость
Чётность
Деление с остатком
Каноническое разложение
Взаимно простые числа
Последовательности:

Необходимая теорияЧисловые множестваДелимостьЧётностьДеление с остаткомКаноническое разложениеВзаимно простые числаПоследовательности: арифметическая прогрессия, геометрическая прогрессияМетод «Оценка плюс пример»

арифметическая прогрессия, геометрическая прогрессия
Метод «Оценка плюс пример»


Слайд 8 Необходимая теория

Необходимая теория

Слайд 9 Необходимая теория
Делимость
Понятие делимости относится к целым числам.

Определение: Число

Необходимая теорияДелимостьПонятие делимости относится к целым числам.Определение: Число а делится на

а делится на число в ≠ 0, если найдётся

такое число с, что а = вс.

Наболее важные признаки делимости:
На 2
На 5
На 10
На 3
На 9.

Последняя цифра есть 0, 2, 4, 6 или 8

Последняя цифра есть 0 или 5

Последняя цифра есть 0

Сумма цифр делится на 3

Сумма цифр делится на 9


Слайд 10 Необходимая теория
Чётность

Наиболее важные свойства:
Сумма любого числа чётных слагаемых

Необходимая теорияЧётностьНаиболее важные свойства:Сумма любого числа чётных слагаемых чётна.Сумма чётного числа

чётна.
Сумма чётного числа нечётных слагаемых чётна. Сумма нечётного числа

нечётных слагаемых нечётна.
Пусть имеется произведение нескольких множителей. Если все множители нечётны, то произведение нечётно. Если хотя бы один из множителей чётный, то произведение чётно.

Слайд 11 Необходимая теория
Деление с остатком
Любое число а можно разделить

Необходимая теорияДеление с остаткомЛюбое число а можно разделить с остатком на

с остатком на любое число b ≠ 0. То

есть найдутся такие числа q и r (q – частное, r – остаток), такие, что a = bq + r, и при этом будет выполнено неравенство 0  r  b.


Упражнение 1: Найдите частное и остаток от деления
7 на 2
15 на 4
2014 на 5
2015 на 13
9 на 8
8 на 9


Упражнение 3:
Докажите, что число 1000…..0004 (между 1 и 4 стоит любое число нулей) не является квадратом целого числа.



Слайд 12 Необходимая теория
Каноническое разложение
Всякое число делится на 1 и

Необходимая теорияКаноническое разложениеВсякое число делится на 1 и на само себя.

на само себя. Если число p не равно 1

и не имеет других натуральных делителей кроме 1 и p, то такое число p называется простым.

Число, не равное 1 и не простое, называется составным



Слайд 13 Необходимая теория
Каноническое разложение
Всякое число делится на 1 и

Необходимая теорияКаноническое разложениеВсякое число делится на 1 и на само себя.

на само себя. Если число p не равно 1

и не имеет других натуральных делителей кроме 1 и p, то такое число p называется простым.

Число, не равное 1 и не простое, называется составным.

Разложение на простые множители с точностью до порядка множителей является единственным (Основная теорема арифметики)
и называется каноническим.


Слайд 14 Необходимая теория
Взаимно простые числа
Определение: Числа называются взаимно простыми,

Необходимая теорияВзаимно простые числаОпределение: Числа называются взаимно простыми, если они не

если они не имеют общих делителей кроме 1

Свойства взаимно

простых чисел.
Пусть а и в взаимно простые числа. Тогда:
Если некоторое число делится на а и в , то оно делится и на их произведение ав .
Если ап делится на в , то п делится на в .



Упражнение: Какие цифры можно вставить вместо звёздочек в записи 35*4*, чтобы полученное число делилось на 45?


Слайд 15 Необходимая теория

Упражнение: Между числами 27 и 64 вставьте

Необходимая теорияУпражнение: Между числами 27 и 64 вставьте два числа так, чтобы получилась геометрическая прогрессия.

два числа так, чтобы получилась геометрическая прогрессия.


Слайд 16 Необходимая теория
Метод «Оценка плюс пример»
«Оценка + пример» –

Необходимая теорияМетод «Оценка плюс пример»«Оценка + пример» – это специальное математическое

это специальное математическое рассуждение, которое применяется в некоторых задачах

при нахождении наибольших или наименьших значений.

Суть метода: Нужно найти наименьшее значение некоторой величины А. Действуем в два этапа:

1) Оценка. Показываем, что выполнено неравенство А.
2) Пример. Предъявляем пример, когда достигается равенство А = .

Слайд 17 Метод «Оценка плюс пример»
Пример 2 (средний): Натуральные

Метод «Оценка плюс пример» Пример 2 (средний): Натуральные числа от 1

числа от 1 до 10 разбили на 2 группы

так, что произведение чисел в первой группе делится на произведение чисел во второй группе. Какое наименьшее значение может принимать частное от деления первого произведения на второе?

Слайд 18 Метод «Оценка плюс пример»

Метод «Оценка плюс пример»

Слайд 19 Задача №1. (ЕГЭ-2013 досрочный)
Даны п различных натуральных чисел,

Задача №1. (ЕГЭ-2013 досрочный)Даны п различных натуральных чисел, составляющих арифметическую прогрессию,

составляющих арифметическую прогрессию, п ≥ 3.
а) Может ли

сумма всех данных чисел быть равной 18?
б) Каково наибольшее значение п, если сумма всех данных чисел меньше 800?
в) Найти все возможные п, если сумма значений всех данных чисел равна 111.

Слайд 20 Задача №2. (ЕГЭ-2013)
Задумано несколько целых чисел. Набор этих

Задача №2. (ЕГЭ-2013)Задумано несколько целых чисел. Набор этих чисел и их

чисел и их все возможные суммы (по 2, по

3 и т.д.) выписываются на доску в порядке неубывания. Например, если задуманы числа 2; 3 и 5, то на доске будет набор 2; 3; 5; 5; 7; 8; 10.
а) На доске выписан набор : -11; -7; -5; -4; -1; 2; 6. Какие числа были задуманы?
б) Для некоторых задуманных различных чисел в наборе, выписанном на доске, число 0 встречается ровно 4 раза. Какое наименьшее количество чисел было задумано?
в) Для некоторых задуманных чисел на доске выписан набор. Всегда ли можно по этому набору однозначно определить задуманные числа?

Слайд 21 Задача №3. (ЕГЭ-2014 диагностический вариант)
Можно ли привести пример

Задача №3. (ЕГЭ-2014 диагностический вариант)Можно ли привести пример пяти различных натуральных

пяти различных натуральных чисел, произведение которых равно 720

и
а) 5
б) 4
в) 3
из них образуют геометрическую прогрессию?

Ответ: нет; нет; да.


Слайд 22 Задача №4. (ЕГЭ-2014 диагностический вариант. Республиканская олимпиада 1989

Задача №4. (ЕГЭ-2014 диагностический вариант. Республиканская олимпиада 1989 года )Решите в

года )
Решите в натуральных числах уравнение а! + 5а

+13 = b2.

Подсказка: Рассмотрите выражение а! + 5а при а ≥ 5

Ответ: а = 2, b = 5.

Подсказка: Последняя цифра и квадрат

Подсказка: Перебор вариантов


Слайд 23 Задача №5. (ЕГЭ-2014 досрочный вариант. 28 апреля)
На окружности

Задача №5. (ЕГЭ-2014 досрочный вариант. 28 апреля)На окружности некоторым образом расставили

некоторым образом расставили натуральные числа от 1 до 21

(каждое число поставлено по одному разу). Затем для каждой пары соседних чисел нашли разность большего и меньшего.
а) Могли ли все полученные разности быть не меньше 11?
б) Могли ли все полученные разности быть не меньше 10?
в) Помимо полученных разностей, для каждой пары чисел, стоящих через одно, нашли разность большего и меньшего. Для какого наибольшего целого числа k можно так расставить числа, чтобы все разности были не меньше k ?

Ответ: нет; да; 6.


Слайд 24 Задача №6. (ЕГЭ-2014 5 июня)
На  сайте  проводится  опрос, 

Задача №6. (ЕГЭ-2014 5 июня)На  сайте  проводится  опрос,  кого  из  футболистов 

кого  из  футболистов  посетители  сайта  считают  лучшим  по  итогам

 сезона. Каждый  посетитель  голосует за  одного футболиста. На сайте отображается  рейтинг каждого  футболиста ̶ доля  голосов,  отданных за  него,   в процентах, округленная до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
а) Всего проголосовало 11 посетителей сайта. Мог ли рейтинг  некоторого футболиста быть равным 38?
б) Пусть  посетители  сайта  отдавали  голоса  за  одного  из трех футболистов. Могло  ли быть  так,  что  все  три  футболиста  получили  разное  число  голосов,  но  их  рейтинги одинаковы?
в) На  сайте  отображалось,  что  рейтинг  некоторого футболиста равен 5.  Это  число  не изменилось  и  после  того,  как  Вася  отдал  свой  голос  за  этого  футболиста.  При  каком наименьшем  числе отданных за всех футболистов голосов, включая Васин голос,  такое возможно?

Ответ: нет; да; 110.


  • Имя файла: prezentatsiya-po-matematike-o-metodike-resheniya-zadach-n21-ege-s6.pptx
  • Количество просмотров: 184
  • Количество скачиваний: 2