Слайд 4
Индивидуальные особенности учащихся и их учет в процессе
обучения математике. Типологические группы учащихся
А.Н. Капиносов выделил четыре «условных»
группы:
Слайд 5
Организация дифференциального подхода в обучении математике.
ДИФФЕРЕНЦИАЦИЯ СОДЕРЖАНИЯ
ОБУЧЕНИЯ.
По мнению С.В. Алексеева целесообразно различать следующие три уровня
трудности задания:
Слайд 6
ДИФФЕРЕНЦИАЦИЯ МЕТОДОВ И ФОРМ, ИСПОЛЬЗУЕМЫХ ПРИ ОБУЧЕНИИ математике
Слайд 7
КЛАССИФИКАЦИЯ РАЗЛИЧНЫХ СПОСОБОВ ОРГАНИЗАЦИИ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ В УСЛОВИЯХ
ДИФФЕРЕНЦИРОВАННОГО ОБУЧЕНИЯ
Слайд 8
ОРГАНИЗАЦИЯ ДИФФЕРЕНЦИРОВАННОГО ПОДХОДА НА РАЗЛИЧНЫХ ЭТАПАХ УРОКА:
Первый этап.
Введение нового материала.
На первом уровне ученики самостоятельно ведут поиск.
Учитель указывает лишь результат, формулирует саму проблему.
На втором уровне, т.е. для другой группы учащихся, учитель указывает на проблему, но не сообщает конечного результата, ученики сами формулируют проблему.
На третьем уровне учитель не указывает на проблему, а постепенно подводит учащихся к тому, что они самостоятельно усматривают ее.
Слайд 9
Второй этап.
а) самостоятельные работы учащихся по изучению
нового,
б) самостоятельные работы по применению изученной теории к решению
задач
Слайд 10
Третий этап. Работа с учебником
При работе с учебником
задания, предлагаемые учащимся, также могут быть дифференцированы. Например, одной
группе учащихся предлагается прочитать теорему и выделить все шаги доказательства, другой – план доказательства; третьей группе предлагаются задания с пропусками и т.д.
Слайд 11
Четвертый этап. Дифференцированный контроль подготовленности к уроку
Н.В.Метельский предлагает
на каждом уроке математики проводить фронтальный письменный опрос всех
учащихся класса одновременно в двух вариантах на 10 минут. Он подчеркивает, что такие письменные опросы целесообразно проводить отдельно по трем основным компонентам содержания:
а) формулировка определений, теорем, правил и т. п. (типа математического диктанта);
б) доказательствам;
в) решению задач (выполнение упражнений)
Слайд 12
Пятый этап. Домашние задания
М.М. Рассудовская предлагает составлять дифференцированные
домашние задания, которые могли бы более полно использовать возможности
учащихся и позволили бы организовать их проверку в классе. Принцип составления таких упражнений заключается в том, что первое упражнение предназначено для всего класса, а второе непосредственно связано с первым, но содержит по сравнению с первым некоторую дополнительную трудность
Слайд 13
Методика дифференцированной работы на уроке
Слайд 14
Заключение.
Итак, какая же реальная польза от применения дифференцированного
обучения?
- Значительно улучшается четкость в организации работы класса. Четкость
в работе дает возможность постоянно контролировать знания, умения, навыки.
- Заметно увеличиваются возможности для работы с сильными учениками, поскольку учитель уже не должен спрашивать данный на уроке материал в полном объеме со всех учащихся.
- Кроме того, отпадает необходимость разгружать программу и снижать общий уровень требований, оглядываясь на слабых учащихся.