FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Создайте последовательность, которая соответствует нескольким закономерностям.
Попробуйте, наоборот, записать несколько последовательностей, подчиненных одному закону.
Удивительно, если удалось найти «закон» построения последовательности, то можно предсказать все будущие числа последовательности!
Есть мнение, что для любой последовательности можно найти закономерность.
Натуральное число, отличное от 1,называется простым, если оно делится только на себя и 1. Например, 2, 3, 5, 7, 11, …
Представление чисел Фибоначчи в виде квадратов со стороной соответствующего размера
1170 – 1250 г.
Задача о размножении кроликов
Пусть в огороженном месте имеется пара кроликов. Эта пара кроликов производит новую пару кроликов каждый месяц. Каждая новорожденная пара кроликов становится зрелой через месяц и затем дает жизнь новой паре кроликов. Возникает вопрос: сколько пар кроликов будет в через год?
Решение: Если заметить, что размножение кроликов образует последовательность чисел Фибоначчи, то далее ответ прост: истечение 12 месяцев соответствует 13-му числу этой последовательности, т.е. 233 пары кроликов.
1+2+4+8+16+32+64+128+256+512+1024+2048+4096+8192…=?
увеличивая в 2 раза
Натуральные числа, делящиеся на 9, записаны в порядке возрастания: 9, 18, 27, 36,… Под каждым членом этой последовательности записана сумма его цифр. На каком месте во второй последовательности впервые появится число 81? Что во второй последовательности встретится раньше: первый раз число 36 или десять раз подряд число 27?
Восстанови последовательность чисел 7,_, _, _, _, _, _,9, если известно, что сумма любых трех чисел, стоящих подряд, равна 20.
Петя, Вася и Коля записали в ряд по 100 чисел.
У Пети пятое число равно 12, и каждое число начиная со второго на два больше левого соседа.
У Васи первое и третье число равны 4 и 6 соответственно, а каждое число, кроме крайних, вдвое меньше суммы его соседей.
А Коля просто записывал периметры прямоугольников шириной в одну клетку: сначала-периметр прямоугольника длиной в одну клетку, потом – длиной в две клетки, и так далее (сторона каждой клетки равна 1).
У кого из мальчиков совпали записанные ряды чисел?
Подумайте в каких последовательностях можно пользоваться приемом юного Гаусса при вычислении суммы членов последовательности?
2. В благоприятных условиях бактерии размножаются так, что на протяжении одной минуты одна из них делится на две. Найдите количество бактерий, рожденных одной бактерией за 7 мин.
Вопросы к задачам:
Составьте последовательности к задачам. В какой задаче закон, по которому образована последовательность, отличается от остальных?
Решите задачи, пользуйтесь при необходимости идеями юного Гаусса.
Кто быстрее размножаются кролики (задача рассматривалась выше) или бактерии?
Кто накопит большую сумму за 7 месяцев? Родители Андрея из задачи 4. или Максима, если они откладывают каждый месяц сумму вдвое большую, чем в предыдущем месяце, начиная с 50 рублей? А за 3 месяца? За 12 месяцев?
3. Петр решил заняться бегом, начав с 200 м и увеличивая дистанцию ежедневно на 50 м. Через сколько дней Петр сможет пробежать 2 км?
4. Родители ко Дню рождения своего сына решили купить ему мобильный телефон. Для этого они в первый месяц отложили 650 рублей, а каждый следующий месяц они откладывали на 50 рублей больше, чем в предыдущий. Какая сумма будет у родителей Андрея через 7 месяцев.
Метод “Математических последовательностей”-
Мы нашли закономерности в числах дат рождения наших близких…Теперь не забудем!