Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему для организации занятий в рамках математического кружка или факультатива Софизмы и парадоксы

Понятие софизмаСофизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям, и имеющее изначально заложенную ошибку.
Логарифмические софизмы и парадоксыЛактионова Раиса Александровна, учитель высшей квалификационной категории, старший учительМУНИЦИПАЛЬНОЕ Понятие софизмаСофизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение Формула успешности софизмУспешность софизма определяется следующей формулой:  a + b + Типичные ошибки при решении софизмов Запрещенные действия; пренебрежение условиями  теорем; формул Понятие парадоксаПарадокс - (от греч. paradoxos – неожиданный, странный) – мнение, рассуждение, Парадоксы отличаются от софизмов тем, что они возникают не в результате непреднамеренных и Из истории софизмовВ Древней Греции «софисты» (от греческого слова sofos, означающего мудрость) Из истории парадоксовТак как парадоксы чаще всего открываются, а не придумываются, сложно Великие софистыПротагор из Абдеры, Горгий из Леонтип, Гиппий из Элиды и Продик из Кеоса. Люди, открывшие некоторые парадоксыГегель (история), Гемпель (вороны), Плутарх (корабль), Паррондо (игры), Берксон Виды парадоксов и софизмовПарадокс Напишем тождество 4:4=5:5. Вынесем из каждой части тождества общие множители за скобки, Ошибка сделана при вынесении общих множителей 4 из левой части и 5 Парадокс вороновПредположим, что существует теория, согласно которой все вороны чёрные. Согласно формальной
Слайды презентации

Слайд 2 Понятие софизма
Софизм - (от греческого sophisma – уловка,

Понятие софизмаСофизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка),

ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую

нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям, и имеющее изначально заложенную ошибку.


Слайд 3 Формула успешности софизм
Успешность софизма определяется следующей формулой:

Формула успешности софизмУспешность софизма определяется следующей формулой: a + b +

a + b + c + d + e

+ f, где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы.
а - отрицательные качества лица (отсутствие развития способности управлять вниманием).
b - положительные качества лица (способность активно мыслить)
с - аффективный элемент в душе искусного диалектика
d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления
е - категоричность тона, не допускающего возражения, определённая мимика
f - пассивность слушателя


Слайд 4 Типичные ошибки при решении софизмов
Запрещенные действия;

Типичные ошибки при решении софизмов Запрещенные действия; пренебрежение условиями теорем; формул

пренебрежение условиями теорем; формул и правил;
ошибочный

чертеж;
опора на ошибочные умозаключения.


Слайд 5 Понятие парадокса
Парадокс - (от греч. paradoxos – неожиданный,

Понятие парадоксаПарадокс - (от греч. paradoxos – неожиданный, странный) – мнение,

странный) – мнение, рассуждение, резко расходящееся с общепринятыми понятиями,

противоречащее (иногда только на первый взгляд) здравому смыслу; формально-логическое противоречие, которое возникает в содержательной теории множеств и формальной логике при сохранении логической правильности хода рассуждений.

Слайд 6 Парадоксы отличаются от софизмов тем, что они возникают не

Парадоксы отличаются от софизмов тем, что они возникают не в результате непреднамеренных

в результате непреднамеренных и намеренных логических ошибок, а из-за

неясности, неопределенности и даже противоречивости некоторых исходных принципов и понятий той или иной науки или же общепринятых норм, приемов и методов познания в целом. Парадоксы последнего рода были широко известны еще в античном мире.
Парадокс – это абсолютная истина, софизм – относительная истина.


Слайд 7 Из истории софизмов
В Древней Греции «софисты» (от греческого

Из истории софизмовВ Древней Греции «софисты» (от греческого слова sofos, означающего

слова sofos, означающего мудрость) – учителя философии, красноречия и

мыслители, задачей которых было научить своих учеников «мыслить, говорить и делать», то есть уметь убедительно защитить любую точку зрения.


Слайд 8 Из истории парадоксов
Так как парадоксы чаще всего открываются,

Из истории парадоксовТак как парадоксы чаще всего открываются, а не придумываются,

а не придумываются, сложно рассказать что либо об их

истории. Однако мы можем утверждать, что первыми людьми кто вообще оперировал понятием парадокс были те же философы Древней Греции.


Слайд 9 Великие софисты
Протагор из Абдеры, Горгий из Леонтип, Гиппий

Великие софистыПротагор из Абдеры, Горгий из Леонтип, Гиппий из Элиды и Продик из Кеоса.

из Элиды и Продик из Кеоса.


Слайд 10 Люди, открывшие некоторые парадоксы
Гегель (история), Гемпель (вороны), Плутарх

Люди, открывшие некоторые парадоксыГегель (история), Гемпель (вороны), Плутарх (корабль), Паррондо (игры),

(корабль), Паррондо (игры), Берксон (события), Шрёдингер (кот), Харви (Техас)


Слайд 11 Виды парадоксов и софизмов
Парадокс

Виды парадоксов и софизмовПарадокс     Софизм

Софизм

Арифметический
Логический

Экономический Геометрический


Математический

Физический


Слайд 12 Напишем тождество 4:4=5:5. Вынесем из каждой части тождества

Напишем тождество 4:4=5:5. Вынесем из каждой части тождества общие множители за

общие множители за скобки, получаем: 4(1:1)=5(1:1) или (2·2)·(1:1) =

5·(1:1) Так как 1:1=1 , то сократим и получим 2 · 2 = 5
Дважды два пять


Слайд 13 Ошибка сделана при вынесении общих множителей 4 из

Ошибка сделана при вынесении общих множителей 4 из левой части и

левой части и 5 из правой. Действительно, 4:4=1:1, но

4:4≠4(1:1). Так выносить за скобки нельзя!


  • Имя файла: prezentatsiya-dlya-organizatsii-zanyatiy-v-ramkah-matematicheskogo-kruzhka-ili-fakultativa-sofizmy-i-paradoksy.pptx
  • Количество просмотров: 131
  • Количество скачиваний: 0