и, пожалуй самой просто функцией является линейная функция y=kx+m.
Вы знаете что при конкретных k и m
графиком функции y=kx+m
является прямая линия.
Так же из курса школьной программы мы уже знаем, что k=tgа, где а-угол наклона прямой к оси ОХ, а
m-ордината точки, в которой прямая пересекается с осью ОУ. И если мы будем изменять значение k , то через одну точку пересечения m с осью ОУ проходит несколько различных прямых. Если же k зафиксировать, а m менять, то получим семейство параллельных прямых.
Теперь поближе познакомимся с линейными уравнениями. Линейные уравнения с двумя переменными называется уравнение вида ax+by+c=0. Если b=0, то его можно привести к виду y= -ax:b-c:b, и, положив k= -a:b и
m= -c:b, получить стандартный вид y=kx+m. Если же b=0, то уравнение приводится к виду x= -c:b и мы получаем прямую, параллельную оси OY.
Рассмотри подробнее случай b=0. Тогда, как было указано, мы можем привести уравнение к виду y=kx+m. Посмотрим, как меняется график функции y(x) при изменении коэффициентов k и m ,то есть как функция y(x) зависит от параметров k и m.
Если k<0, то функция убывает, если k=0, то функция постоянна, и если k>0, то функция возрастает (рис. 1).
Если m<0, то точка пересечения с осью ОУ будет в нижней полуплоскости, если m=0, то прямая пройдёт через начало координат, и если m>0, то график будет пересекаться с осью ОУ в верхней полуплоскости (рис. 2).
k<0 k=0 k>0 m<0 m=0 m>0
рис. 1 рис. 2