Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Эконометрика. Оценка значимости уравнения парной линейной регрессии

Содержание

После того, как получено уравнение линейной регрессии, обязательно проводится оценка его качества и значимости коэффициентов на основе проверки гипотез
Оценка  значимости уравнения парной линейной регрессии (идентификация ) После того, как получено уравнение линейной регрессии, обязательно проводится оценка его качества Статистическая гипотеза (SH) – это предположение о величине параметра распределения генеральной совокупности.Проверка Разложение отклонения от среднего Общая вариация переменной Yвеличина, являющаяся мерой вариации переменной Y вокруг ее среднего значения Центральное место при этом занимает анализ трех сумм:- общая сумма квадратов отклонений Разложение общей вариации переменной YВ этой сумме II = 0. TSS – total sum of squares – вся дисперсия или вариация Y, Для линейной регрессии :TSS = RSS + ESS Для оценки качества линейной регрессии используют коэффициент детерминации - показывает долю дисперсии, Связь коэффициента детерминации с коэффициентом корреляции Свойства коэффициента детерминации Суммы квадратов отклонений (TSS, RSS, ESS) имеют определенное число степеней свободыЧисло степеней Распределение дисперсии на одну степень свободы Оценка значимости уравнения регрессии в целом делается с помощью F-критерия ФишераГипотеза Н0 Итак, если Fфакт(рассчет.) > Fтабл. , то гипотеза Н0 о случайной природе Fтабл – это максимально возможное значение критерия, которое могло сформироваться под влиянием Регрессия с ограничениямиМодель, в которой мы проверяем гипотезу о коэффициентах, называется регрессией
Слайды презентации

Слайд 2 После того, как получено уравнение линейной регрессии, обязательно

После того, как получено уравнение линейной регрессии, обязательно проводится оценка его

проводится оценка его качества и значимости коэффициентов на основе

проверки гипотез

Слайд 3 Статистическая гипотеза (SH) – это предположение о величине

Статистическая гипотеза (SH) – это предположение о величине параметра распределения генеральной

параметра распределения генеральной совокупности.
Проверка (SH) осуществляется на базе двух

типов гипотез:
нулевая H0 – допущение, которое считается верным до тех пор, пока не будет доказано обратное, исходя из результатов статистической проверки. В частности, предположение о случайной природе оцениваемых параметров, т.е. о незначимом их отличии от нуля.
альтернативная H1 - гипотеза, которая принимается, если в результате проверки отвергается нулевая гипотеза. В частности, это принятие предположения о неслучайной природе оцениваемых параметров, т.е. их статистическая значимость и надежность: не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора.
Ошибки 1-го рода – вероятность отвержения гипотезы H0, когда она должна быть принята.
Ошибка 2-го рода – вероятность принятия гипотезы H0, когда она должна быть отвергнута .


Слайд 4 Разложение отклонения от среднего

Разложение отклонения от среднего

Слайд 5 Общая вариация переменной Y
величина, являющаяся мерой вариации переменной

Общая вариация переменной Yвеличина, являющаяся мерой вариации переменной Y вокруг ее среднего значения

Y вокруг ее среднего значения


Слайд 6 Центральное место при этом занимает анализ трех сумм:
-

Центральное место при этом занимает анализ трех сумм:- общая сумма квадратов

общая сумма квадратов отклонений изучаемого показателя y от его

среднего арифметического значения (total sum of squares)

- сумма квадратов отклонений y, объясняемая регрессией, от среднего арифметического значения изучаемого показателя у (regression sum of squares)

- остаточная сумма квадратов отклонений y, объясняемая влиянием неучтенных при моделировании факторов (error sum of squares)


Слайд 7 Разложение общей вариации переменной Y

В этой сумме II

Разложение общей вариации переменной YВ этой сумме II = 0.

= 0.

Тогда:

I II III


Слайд 8 TSS – total sum of squares – вся

TSS – total sum of squares – вся дисперсия или вариация

дисперсия или вариация Y, характеризует степень случайного разброса значений

функции регрессии около среднего значения Y
ESS – error sum of squares – есть сумма квадратов остатков регрессии, та величина, которую мы минимизируем при построении прямой, часть дисперсии, которая нашим уравнением не объясняется
RSS – regression sum of squares – объясненная часть общей вариации



Слайд 9 Для линейной регрессии :

TSS = RSS + ESS

Для линейной регрессии :TSS = RSS + ESS

Слайд 10 Для оценки качества линейной регрессии используют коэффициент детерминации

Для оценки качества линейной регрессии используют коэффициент детерминации - показывает долю

- показывает долю дисперсии, объясняемую регрессией, в общей дисперсии

У

-это величина:


Слайд 11 Связь коэффициента детерминации с коэффициентом корреляции

Связь коэффициента детерминации с коэффициентом корреляции

Слайд 12 Свойства коэффициента детерминации


Свойства коэффициента детерминации

Слайд 13

Суммы квадратов отклонений (TSS, RSS, ESS) имеют определенное

Суммы квадратов отклонений (TSS, RSS, ESS) имеют определенное число степеней свободыЧисло

число степеней свободы

Число степеней свободы K связано с числом

наблюдений и числом определяемых по ним констант



Слайд 14 Распределение дисперсии
на одну степень свободы


Распределение дисперсии на одну степень свободы

Слайд 15 Оценка значимости уравнения регрессии в целом делается с

Оценка значимости уравнения регрессии в целом делается с помощью F-критерия ФишераГипотеза

помощью F-критерия Фишера


Гипотеза Н0 (нулевая) об отсутствии связи изучаемого

показателя с фактором отклоняется и делается вывод о существенности этой связи с уровнем значимости α, если



Слайд 16 Итак, если Fфакт(рассчет.) > Fтабл. ,
то гипотеза

Итак, если Fфакт(рассчет.) > Fтабл. , то гипотеза Н0 о случайной

Н0 о случайной природе оцениваемых характеристик отклоняется и признается

их статистическая значимость и надежность.
Для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции рассчитывается t-критерий Стьюдента.

Слайд 17 Fтабл – это максимально возможное значение критерия, которое

Fтабл – это максимально возможное значение критерия, которое могло сформироваться под

могло сформироваться под влиянием случайных факторов при данных степенях

свободы и уровне значимости α.
Уровень значимости α – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно принимается равной 0,05 или 0,01.
Имеются таблицы критических (табличных) значений F-критерия: F(α; k1; k2), где , k1=m; k2=n-m-1,
где n – число единиц совокупности;
m – число параметров при переменных х.
Например, для линейного уравнения парной регрессии с уровнем значимости α = 0,05 необходимо в таблице значений (см.приложение) найти значение F(0,05; 1; n – 2).


  • Имя файла: ekonometrika-otsenka-znachimosti-uravneniya-parnoy-lineynoy-regressii.pptx
  • Количество просмотров: 130
  • Количество скачиваний: 0